Characterization of myenteric sensory neurons in the mouse small intestine

J Neurophysiol. 2006 Sep;96(3):998-1010. doi: 10.1152/jn.00204.2006.

Abstract

We recorded from myenteric AH/Dogiel type II cells, demonstrated mechanosensitive responses, and characterized their basic properties. Recordings were obtained using the mouse longitudinal muscle myenteric plexus preparation with patch-clamp and sharp intracellular electrodes. The neurons had an action potential hump and a slow afterhyperpolarization (AHP) current. The slow AHP was carried by intermediate conductance Ca2+ -dependent K+ -channel currents sensitive to charybdotoxin and clotrimazole. All possessed a hyperpolarization-activated current that was blocked by extracellular cesium. They also expressed a TTX-resistant Na+ current with an onset near the resting potential. Pressing on the ganglion containing the patched neuron evoked depolarizing potentials in 17/18 cells. The potentials persisted after synaptic transmission was blocked. Volleys of presynaptic electrical stimuli evoked slow excitatory postsynaptic potentials (EPSPs) in 9/11 sensory neurons, but 0/29 cells received fast EPSP input. The slow EPSP was generated by removal of a voltage-insensitive K+ current. Patch-clamp recording with a KMeSO4-containing, but not a conventional KCl-rich, intracellular solution reproduced the single-spike slow AHPs and low input resistances seen with sharp intracellular recording. Cell-attached recording of intermediate conductance potassium channels supported the conclusion that the single-spike slow AHP is an intrinsic property of intestinal AH/sensory neurons. Unitary current recordings also suggested that the slow AHP current probably does not contribute significantly to the high resting background conductance seen in these cells. The characterization of mouse myenteric sensory neurons opens the way for the study of their roles in normal and pathological physiology.

MeSH terms

  • Animals
  • Electric Stimulation
  • Electrophysiology
  • Female
  • Ganglia, Autonomic / physiology
  • Ileum / innervation*
  • Intestine, Small / innervation*
  • Mice
  • Mice, Inbred C57BL
  • Myenteric Plexus / physiology*
  • Neurons, Afferent / physiology*
  • Patch-Clamp Techniques