Send to

Choose Destination
J Neurosci. 2006 Jun 28;26(26):7071-81.

Main determinants of presynaptic Ca2+ dynamics at individual mossy fiber-CA3 pyramidal cell synapses.

Author information

Institute of Neurology, University College London, London WC1N 3BG, United Kingdom.


Synaptic transmission between hippocampal mossy fibers (MFs) and CA3 pyramidal cells exhibits remarkable use-dependent plasticity. The underlying presynaptic mechanisms, however, remain poorly understood. Here, we have used fluorescent Ca2+ indicators Fluo-4, Fluo-5F, and Oregon Green BAPTA-1 to investigate Ca2+ dynamics in individual giant MF boutons (MFBs) in area CA3 traced from the somata of granule cells held in whole-cell mode. In an individual MFB, a single action potential induces a brief peak of free Ca2+ (estimated in the range of 8-9 microm) followed by an elevation to approximately 320 nm, which slowly decays to its resting level of approximately 110 nm. Changes in the somatic membrane potential influence presynaptic Ca2+ entry at proximal MFBs in the hilus. This influence decays with distance along the axon, with a length constant of approximately 200 microm. In giant MFBs in CA3, progressive saturation of endogenous Ca2+ buffers during repetitive spiking amplifies rapid Ca2+ peaks and the residual Ca2+ severalfold, suggesting a causal link to synaptic facilitation. We find that internal Ca2+ stores contribute to maintaining the low resting Ca2+ providing approximately 22% of the buffering/extrusion capacity of giant MFBs. Rapid Ca2+ release from stores represents up to 20% of the presynaptic Ca2+ transient evoked by a brief train of action potentials. The results identify the main components of presynaptic Ca2+ dynamics at this important cortical synapse.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center