Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 20 of 8074

1.

Assessing the Contribution of Active and Passive Stresses in C. elegans Elongation.

Ben Amar M, Qiuyang-Qu P, Vuong-Brender TTK, Labouesse M.

Phys Rev Lett. 2018 Dec 28;121(26):268102. doi: 10.1103/PhysRevLett.121.268102.

PMID:
30636158
2.
3.

Salt-Dependent Rheology and Surface Tension of Protein Condensates Using Optical Traps.

Jawerth LM, Ijavi M, Ruer M, Saha S, Jahnel M, Hyman AA, Jülicher F, Fischer-Friedrich E.

Phys Rev Lett. 2018 Dec 21;121(25):258101. doi: 10.1103/PhysRevLett.121.258101.

PMID:
30608810
4.

The USTC co-opts an ancient machinery to drive piRNA transcription in C. elegans.

Weng C, Kosalka J, Berkyurek AC, Stempor P, Feng X, Mao H, Zeng C, Li WJ, Yan YH, Dong MQ, Morero NR, Zuliani C, Barabas O, Ahringer J, Guang S, Miska EA.

Genes Dev. 2019 Jan 1;33(1-2):90-102. doi: 10.1101/gad.319293.118. Epub 2018 Dec 19.

5.

A phenotypic Caenorhabditis elegans screen identifies a selective suppressor of antipsychotic-induced hyperphagia.

Perez-Gomez A, Carretero M, Weber N, Peterka V, To A, Titova V, Solis G, Osborn O, Petrascheck M.

Nat Commun. 2018 Dec 10;9(1):5272. doi: 10.1038/s41467-018-07684-y.

6.

ATP-dependent membrane remodeling links EHD1 functions to endocytic recycling.

Deo R, Kushwah MS, Kamerkar SC, Kadam NY, Dar S, Babu K, Srivastava A, Pucadyil TJ.

Nat Commun. 2018 Dec 5;9(1):5187. doi: 10.1038/s41467-018-07586-z.

7.

Anthelmintic drug actions in resistant and susceptible C. elegans revealed by electrophysiological recordings in a multichannel microfluidic device.

Weeks JC, Robinson KJ, Lockery SR, Roberts WM.

Int J Parasitol Drugs Drug Resist. 2018 Dec;8(3):607-628. doi: 10.1016/j.ijpddr.2018.10.003. Epub 2018 Oct 30.

8.

EGL-3 and EGL-21 are required to trigger nocifensive response of Caenorhabditis elegans to noxious heat.

Nkambeu B, Salem JB, Leonelli S, Marashi FA, Beaudry F.

Neuropeptides. 2019 Feb;73:41-48. doi: 10.1016/j.npep.2018.11.002. Epub 2018 Nov 13.

PMID:
30454862
9.

Ecotoxicity of Caenorhabditis elegans following a step and repeated chronic exposure to tetrabromobisphenol A.

Liu F, Zaman WQ, Peng H, Li C, Cao X, Huang K, Cui C, Zhang W, Lin K, Luo Q.

Ecotoxicol Environ Saf. 2019 Mar;169:273-281. doi: 10.1016/j.ecoenv.2018.10.113. Epub 2018 Nov 16.

PMID:
30453175
10.

Engulfing cells promote neuronal regeneration and remove neuronal debris through distinct biochemical functions of CED-1.

Chiu H, Zou Y, Suzuki N, Hsieh YW, Chuang CF, Wu YC, Chang C.

Nat Commun. 2018 Nov 19;9(1):4842. doi: 10.1038/s41467-018-07291-x.

11.

Sentryn Acts with a Subset of Active Zone Proteins To Optimize the Localization of Synaptic Vesicles in Caenorhabditis elegans.

Edwards SL, Morrison LM, Manning L, Stec N, Richmond JE, Miller KG.

Genetics. 2018 Nov;210(3):947-968. doi: 10.1534/genetics.118.301466.

12.

Sentryn and SAD Kinase Link the Guided Transport and Capture of Dense Core Vesicles in Caenorhabditis elegans.

Morrison LM, Edwards SL, Manning L, Stec N, Richmond JE, Miller KG.

Genetics. 2018 Nov;210(3):925-946. doi: 10.1534/genetics.118.300847.

13.

BRCA1-BARD1 associate with the synaptonemal complex and pro-crossover factors and influence RAD-51 dynamics during Caenorhabditis elegans meiosis.

Janisiw E, Dello Stritto MR, Jantsch V, Silva N.

PLoS Genet. 2018 Nov 1;14(11):e1007653. doi: 10.1371/journal.pgen.1007653. eCollection 2018 Nov.

14.

DAF-16/FOXO and HLH-30/TFEB function as combinatorial transcription factors to promote stress resistance and longevity.

Lin XX, Sen I, Janssens GE, Zhou X, Fonslow BR, Edgar D, Stroustrup N, Swoboda P, Yates JR 3rd, Ruvkun G, Riedel CG.

Nat Commun. 2018 Oct 23;9(1):4400. doi: 10.1038/s41467-018-06624-0.

16.

Decoding the intensity of sensory input by two glutamate receptors in one C. elegans interneuron.

Zou W, Fu J, Zhang H, Du K, Huang W, Yu J, Li S, Fan Y, Baylis HA, Gao S, Xiao R, Ji W, Kang L, Xu T.

Nat Commun. 2018 Oct 17;9(1):4311. doi: 10.1038/s41467-018-06819-5.

17.

The balance of poly(U) polymerase activity ensures germline identity, survival and development in Caenorhabditis elegans.

Li Y, Maine EM.

Development. 2018 Oct 10;145(19). pii: dev165944. doi: 10.1242/dev.165944.

PMID:
30305273
18.

Single copy/knock-in models of ALS SOD1 in C. elegans suggest loss and gain of function have different contributions to cholinergic and glutamatergic neurodegeneration.

Baskoylu SN, Yersak J, O'Hern P, Grosser S, Simon J, Kim S, Schuch K, Dimitriadi M, Yanagi KS, Lins J, Hart AC.

PLoS Genet. 2018 Oct 8;14(10):e1007682. doi: 10.1371/journal.pgen.1007682. eCollection 2018 Oct.

19.

RBM-5 modulates U2AF large subunit-dependent alternative splicing in C. elegans.

Zhou C, Gao X, Hu S, Gan W, Xu J, Ma YC, Ma L.

RNA Biol. 2018;15(10):1295-1308. doi: 10.1080/15476286.2018.1526540. Epub 2018 Oct 13.

20.

Distinct CED-10/Rac1 domains confer context-specific functions in development.

Nørgaard S, Deng S, Cao W, Pocock R.

PLoS Genet. 2018 Sep 28;14(9):e1007670. doi: 10.1371/journal.pgen.1007670. eCollection 2018 Sep.

Supplemental Content

Loading ...
Support Center