Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 20 of 137

1.

In vivo comparison of the charge densities required to evoke motor responses using novel annular penetrating microelectrodes.

Brunton EK, Winther-Jensen B, Wang C, Yan EB, Hagh Gooie S, Lowery AJ, Rajan R.

Front Neuroeng. 2015 May 12;8:5. doi: 10.3389/fneng.2015.00005. eCollection 2015. Erratum in: Front Neurosci. 2015;9:271.

2.

SET: a pupil detection method using sinusoidal approximation.

Javadi AH, Hakimi Z, Barati M, Walsh V, Tcheang L.

Front Neuroeng. 2015 Apr 9;8:4. doi: 10.3389/fneng.2015.00004. eCollection 2015.

3.

The chronic challenge-new vistas on long-term multisite contacts to the central nervous system.

Hofmann UG, Krüger J.

Front Neuroeng. 2015 Mar 18;8:3. doi: 10.3389/fneng.2015.00003. eCollection 2015. No abstract available.

4.

High frequency switched-mode stimulation can evoke post synaptic responses in cerebellar principal neurons.

van Dongen MN, Hoebeek FE, Koekkoek SK, De Zeeuw CI, Serdijn WA.

Front Neuroeng. 2015 Mar 6;8:2. doi: 10.3389/fneng.2015.00002. eCollection 2015.

5.

NeuroPG: open source software for optical pattern generation and data acquisition.

Avants BW, Murphy DB, Dapello JA, Robinson JT.

Front Neuroeng. 2015 Mar 2;8:1. doi: 10.3389/fneng.2015.00001. eCollection 2015.

6.

A low-cost programmable pulse generator for physiology and behavior.

Sanders JI, Kepecs A.

Front Neuroeng. 2014 Dec 11;7:43. doi: 10.3389/fneng.2014.00043. eCollection 2014.

7.

Interaction of BCI with the underlying neurological conditions in patients: pros and cons.

Vuckovic A, Pineda JA, LaMarca K, Gupta D, Guger C.

Front Neuroeng. 2014 Nov 18;7:42. doi: 10.3389/fneng.2014.00042. eCollection 2014. No abstract available.

8.

Glial cells, but not neurons, exhibit a controllable response to a localized inflammatory microenvironment in vitro.

Sommakia S, Rickus JL, Otto KJ.

Front Neuroeng. 2014 Nov 14;7:41. doi: 10.3389/fneng.2014.00041. eCollection 2014.

9.

Real-time in vivo optogenetic neuromodulation and multielectrode electrophysiologic recording with NeuroRighter.

Laxpati NG, Mahmoudi B, Gutekunst CA, Newman JP, Zeller-Townson R, Gross RE.

Front Neuroeng. 2014 Oct 29;7:40. doi: 10.3389/fneng.2014.00040. eCollection 2014.

10.

A CMOS IC-based multisite measuring system for stimulation and recording in neural preparations in vitro.

Tateno T, Nishikawa J.

Front Neuroeng. 2014 Oct 10;7:39. doi: 10.3389/fneng.2014.00039. eCollection 2014.

11.

Challenges in clinical applications of brain computer interfaces in individuals with spinal cord injury.

Rupp R.

Front Neuroeng. 2014 Sep 24;7:38. doi: 10.3389/fneng.2014.00038. eCollection 2014. Review.

12.
13.

Movement-related cortical potentials in paraplegic patients: abnormal patterns and considerations for BCI-rehabilitation.

Xu R, Jiang N, Vuckovic A, Hasan M, Mrachacz-Kersting N, Allan D, Fraser M, Nasseroleslami B, Conway B, Dremstrup K, Farina D.

Front Neuroeng. 2014 Aug 27;7:35. doi: 10.3389/fneng.2014.00035. eCollection 2014.

14.

In vivo monitoring of glial scar proliferation on chronically implanted neural electrodes by fiber optical coherence tomography.

Xie Y, Martini N, Hassler C, Kirch RD, Stieglitz T, Seifert A, Hofmann UG.

Front Neuroeng. 2014 Aug 21;7:34. doi: 10.3389/fneng.2014.00034. eCollection 2014.

15.

Neurorehabilitation of social dysfunctions: a model-based neurofeedback approach for low and high-functioning autism.

Pineda JA, Friedrich EV, LaMarca K.

Front Neuroeng. 2014 Aug 7;7:29. doi: 10.3389/fneng.2014.00029. eCollection 2014.

16.

Changes in scalp potentials and spatial smoothing effects of inclusion of dura layer in human head models for EEG simulations.

Ramon C, Garguilo P, Fridgeirsson EA, Haueisen J.

Front Neuroeng. 2014 Aug 5;7:32. doi: 10.3389/fneng.2014.00032. eCollection 2014.

17.

Resistive and reactive changes to the impedance of intracortical microelectrodes can be mitigated with polyethylene glycol under acute in vitro and in vivo settings.

Sommakia S, Gaire J, Rickus JL, Otto KJ.

Front Neuroeng. 2014 Aug 4;7:33. doi: 10.3389/fneng.2014.00033. eCollection 2014.

18.

Characterizing relationships of DTI, fMRI, and motor recovery in stroke rehabilitation utilizing brain-computer interface technology.

Song J, Young BM, Nigogosyan Z, Walton LM, Nair VA, Grogan SW, Tyler ME, Farrar-Edwards D, Caldera KE, Sattin JA, Williams JC, Prabhakaran V.

Front Neuroeng. 2014 Jul 29;7:31. doi: 10.3389/fneng.2014.00031. eCollection 2014.

19.

Brain-computer interface-based robotic end effector system for wrist and hand rehabilitation: results of a three-armed randomized controlled trial for chronic stroke.

Ang KK, Guan C, Phua KS, Wang C, Zhou L, Tang KY, Ephraim Joseph GJ, Kuah CW, Chua KS.

Front Neuroeng. 2014 Jul 29;7:30. doi: 10.3389/fneng.2014.00030. eCollection 2014.

20.

Acute human brain responses to intracortical microelectrode arrays: challenges and future prospects.

Fernández E, Greger B, House PA, Aranda I, Botella C, Albisua J, Soto-Sánchez C, Alfaro A, Normann RA.

Front Neuroeng. 2014 Jul 21;7:24. doi: 10.3389/fneng.2014.00024. eCollection 2014.

Supplemental Content

Loading ...
Support Center