Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 200

1.

Self-similarity of phase-space networks of frustrated spin models and lattice gas models.

Peng Y, Wang F, Wong M, Han Y.

Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Nov;84(5 Pt 1):051105. Epub 2011 Nov 9.

PMID:
22181367
2.

Ground-state phase-space structures of two-dimensional ±J spin glasses: A network approach.

Cao X, Wang F, Han Y.

Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Jun;91(6):062135. Epub 2015 Jun 24.

PMID:
26172689
3.

Phase-space networks of geometrically frustrated systems.

Han Y.

Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Nov;80(5 Pt 1):051102. Epub 2009 Nov 5.

PMID:
20364942
4.

Small-network approximations for geometrically frustrated Ising systems.

Zhuang B, Lannert C.

Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Mar;85(3 Pt 1):031107. Epub 2012 Mar 9.

PMID:
22587038
5.

Spin and density overlaps in the frustrated Ising lattice gas.

de Candia A, Coniglio A.

Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Jan;65(1 Pt 2):016132. Epub 2001 Dec 21.

PMID:
11800761
6.

Ground states of the Ising model on an anisotropic triangular lattice: stripes and zigzags.

Dublenych YI.

J Phys Condens Matter. 2013 Oct 9;25(40):406003. doi: 10.1088/0953-8984/25/40/406003. Epub 2013 Sep 11.

PMID:
24026005
7.

Critical space-time networks and geometric phase transitions from frustrated edge antiferromagnetism.

Trugenberger CA.

Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Dec;92(6):062818. doi: 10.1103/PhysRevE.92.062818. Epub 2015 Dec 15.

PMID:
26764755
8.

Spin chirality on a two-dimensional frustrated lattice.

Grohol D, Matan K, Cho JH, Lee SH, Lynn JW, Nocera DG, Lee YS.

Nat Mater. 2005 Apr;4(4):323-8.

PMID:
15793572
9.

Hexagonal-close-packed lattice: Ground state and phase transition.

Hoang DT, Diep HT.

Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Apr;85(4 Pt 1):041107. Epub 2012 Apr 9.

PMID:
22680420
10.

Frustrated mixed spin-1/2 and spin-1 Ising ferrimagnets on a triangular lattice.

Žukovič M, Bobák A.

Phys Rev E Stat Nonlin Soft Matter Phys. 2015 May;91(5):052138. Epub 2015 May 26.

PMID:
26066150
11.

Critical behavior of the frustrated antiferromagnetic six-state clock model on a triangular lattice.

Noh JD, Rieger H, Enderle M, Knorr K.

Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Aug;66(2 Pt 2):026111. Epub 2002 Aug 20.

PMID:
12241241
12.

Ising antiferromagnet on the Archimedean lattices.

Yu U.

Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Jun;91(6):062121. Epub 2015 Jun 17.

PMID:
26172675
13.

Triangular Ising antiferromagnets with quenched nonmagnetic impurities.

Tang HL, Zhu Y, Yang GH, Jiang Y.

Phys Rev E Stat Nonlin Soft Matter Phys. 2010 May;81(5 Pt 1):051107. Epub 2010 May 10.

PMID:
20866185
14.

Dynamics of the frustrated ising lattice gas

Arenzon JJ, Ricci-Tersenghi F, Stariolo DA.

Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 2000 Nov;62(5 Pt A):5978-85.

PMID:
11101924
15.

Frustrated spin model as a hard-sphere liquid.

Mostovoy MV, Khomskii DI, Knoester J, Prokof'ev NV.

Phys Rev Lett. 2003 Apr 11;90(14):147203. Epub 2003 Apr 9.

PMID:
12731945
16.

Off-equilibrium dynamics of the frustrated Ising lattice gas.

Stariolo DA, Arenzon JJ.

Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1999 May;59(5 Pt A):R4762-5.

PMID:
11969514
17.

Two-dimensional XXZ -Ising model on a square-hexagon lattice.

Valverde JS, Rojas O, de Souza SM.

Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Apr;79(4 Pt 1):041101. Epub 2009 Apr 1.

PMID:
19518167
18.

Geometric frustration in buckled colloidal monolayers.

Han Y, Shokef Y, Alsayed AM, Yunker P, Lubensky TC, Yodh AG.

Nature. 2008 Dec 18;456(7224):898-903. doi: 10.1038/nature07595.

PMID:
19092926
19.

Ground-state degeneracies of Ising spin glasses on diamond hierarchical lattices.

Curado EM, Nobre FD, Coutinho S.

Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1999 Oct;60(4 Pt A):3761-70.

PMID:
11970209
20.

Entropy of diluted antiferromagnetic Ising models on frustrated lattices using the Wang-Landau method.

Shevchenko Y, Nefedev K, Okabe Y.

Phys Rev E. 2017 May;95(5-1):052132. doi: 10.1103/PhysRevE.95.052132. Epub 2017 May 22.

PMID:
28618636

Supplemental Content

Support Center