Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 144

1.

The trans-Golgi SNARE syntaxin 6 is recruited to the chlamydial inclusion membrane.

Moore ER, Mead DJ, Dooley CA, Sager J, Hackstadt T.

Microbiology. 2011 Mar;157(Pt 3):830-8. doi: 10.1099/mic.0.045856-0. Epub 2010 Nov 25.

2.

The trans-Golgi SNARE syntaxin 10 is required for optimal development of Chlamydia trachomatis.

Lucas AL, Ouellette SP, Kabeiseman EJ, Cichos KH, Rucks EA.

Front Cell Infect Microbiol. 2015 Sep 25;5:68. doi: 10.3389/fcimb.2015.00068. eCollection 2015.

3.

The eukaryotic signal sequence, YGRL, targets the chlamydial inclusion.

Kabeiseman EJ, Cichos KH, Moore ER.

Front Cell Infect Microbiol. 2014 Sep 11;4:129. doi: 10.3389/fcimb.2014.00129. eCollection 2014.

4.

Vesicle-associated membrane protein 4 and syntaxin 6 interactions at the chlamydial inclusion.

Kabeiseman EJ, Cichos K, Hackstadt T, Lucas A, Moore ER.

Infect Immun. 2013 Sep;81(9):3326-37. doi: 10.1128/IAI.00584-13. Epub 2013 Jun 24.

5.

A Functional Core of IncA Is Required for Chlamydia trachomatis Inclusion Fusion.

Weber MM, Noriea NF, Bauler LD, Lam JL, Sager J, Wesolowski J, Paumet F, Hackstadt T.

J Bacteriol. 2016 Mar 31;198(8):1347-55. doi: 10.1128/JB.00933-15. Print 2016 Apr.

6.

Rab GTPases are recruited to chlamydial inclusions in both a species-dependent and species-independent manner.

Rzomp KA, Scholtes LD, Briggs BJ, Whittaker GR, Scidmore MA.

Infect Immun. 2003 Oct;71(10):5855-70.

7.

The Rab6 effector Bicaudal D1 associates with Chlamydia trachomatis inclusions in a biovar-specific manner.

Moorhead AR, Rzomp KA, Scidmore MA.

Infect Immun. 2007 Feb;75(2):781-91. Epub 2006 Nov 13.

9.
10.

The Chlamydia trachomatis IncA protein is required for homotypic vesicle fusion.

Hackstadt T, Scidmore-Carlson MA, Shaw EI, Fischer ER.

Cell Microbiol. 1999 Sep;1(2):119-30.

PMID:
11207546
11.

Identification and characterization of a Chlamydia trachomatis early operon encoding four novel inclusion membrane proteins.

Scidmore-Carlson MA, Shaw EI, Dooley CA, Fischer ER, Hackstadt T.

Mol Microbiol. 1999 Aug;33(4):753-65.

12.
13.

Inclusion biogenesis and reactivation of persistent Chlamydia trachomatis requires host cell sphingolipid biosynthesis.

Robertson DK, Gu L, Rowe RK, Beatty WL.

PLoS Pathog. 2009 Nov;5(11):e1000664. doi: 10.1371/journal.ppat.1000664. Epub 2009 Nov 20.

14.
15.

Golgi-dependent transport of cholesterol to the Chlamydia trachomatis inclusion.

Carabeo RA, Mead DJ, Hackstadt T.

Proc Natl Acad Sci U S A. 2003 May 27;100(11):6771-6. Epub 2003 May 12.

16.

The GTPase Rab4 interacts with Chlamydia trachomatis inclusion membrane protein CT229.

Rzomp KA, Moorhead AR, Scidmore MA.

Infect Immun. 2006 Sep;74(9):5362-73.

17.

The chlamydial inclusion preferentially intercepts basolaterally directed sphingomyelin-containing exocytic vacuoles.

Moore ER, Fischer ER, Mead DJ, Hackstadt T.

Traffic. 2008 Dec;9(12):2130-40. doi: 10.1111/j.1600-0854.2008.00828.x. Epub 2008 Oct 8.

18.

Chlamydia trachomatis hijacks intra-Golgi COG complex-dependent vesicle trafficking pathway.

Pokrovskaya ID, Szwedo JW, Goodwin A, Lupashina TV, Nagarajan UM, Lupashin VV.

Cell Microbiol. 2012 May;14(5):656-68. doi: 10.1111/j.1462-5822.2012.01747.x. Epub 2012 Feb 15.

19.
20.

A secondary structure motif predictive of protein localization to the chlamydial inclusion membrane.

Bannantine JP, Griffiths RS, Viratyosin W, Brown WJ, Rockey DD.

Cell Microbiol. 2000 Feb;2(1):35-47.

PMID:
11207561

Supplemental Content

Support Center