Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 157

1.

Cleavage of the NF-κB family protein p65/RelA by the chlamydial protease-like activity factor (CPAF) impairs proinflammatory signaling in cells infected with Chlamydiae.

Christian J, Vier J, Paschen SA, Häcker G.

J Biol Chem. 2010 Dec 31;285(53):41320-7. doi: 10.1074/jbc.M110.152280. Epub 2010 Nov 1.

2.

Cleavage of p65/RelA of the NF-kappaB pathway by Chlamydia.

Lad SP, Li J, da Silva Correia J, Pan Q, Gadwal S, Ulevitch RJ, Li E.

Proc Natl Acad Sci U S A. 2007 Feb 20;104(8):2933-8. Epub 2007 Feb 14.

3.

Cytopathicity of Chlamydia is largely reproduced by expression of a single chlamydial protease.

Paschen SA, Christian JG, Vier J, Schmidt F, Walch A, Ojcius DM, Häcker G.

J Cell Biol. 2008 Jul 14;182(1):117-27. doi: 10.1083/jcb.200804023.

4.

Characterization of a secreted Chlamydia protease.

Shaw AC, Vandahl BB, Larsen MR, Roepstorff P, Gevaert K, Vandekerckhove J, Christiansen G, Birkelund S.

Cell Microbiol. 2002 Jul;4(7):411-24.

PMID:
12102687
5.

Chlamydial Protease-Like Activity Factor and Type III Secreted Effectors Cooperate in Inhibition of p65 Nuclear Translocation.

Patton MJ, McCorrister S, Grant C, Westmacott G, Fariss R, Hu P, Zhao K, Blake M, Whitmire B, Yang C, Caldwell HD, McClarty G.

MBio. 2016 Sep 27;7(5). pii: e01427-16. doi: 10.1128/mBio.01427-16.

6.

Persistent Chlamydia trachomatis infection of HeLa cells mediates apoptosis resistance through a Chlamydia protease-like activity factor-independent mechanism and induces high mobility group box 1 release.

Rödel J, Grosse C, Yu H, Wolf K, Otto GP, Liebler-Tenorio E, Forsbach-Birk V, Straube E.

Infect Immun. 2012 Jan;80(1):195-205. doi: 10.1128/IAI.05619-11. Epub 2011 Oct 24.

7.

Golgi fragmentation and sphingomyelin transport to Chlamydia trachomatis during penicillin-induced persistence do not depend on the cytosolic presence of the chlamydial protease CPAF.

Dille S, Herbst K, Volceanov L, Nölke T, Kretz O, Häcker G.

PLoS One. 2014 Jul 28;9(7):e103220. doi: 10.1371/journal.pone.0103220. eCollection 2014.

8.

Targeting of a chlamydial protease impedes intracellular bacterial growth.

Christian JG, Heymann J, Paschen SA, Vier J, Schauenburg L, Rupp J, Meyer TF, Häcker G, Heuer D.

PLoS Pathog. 2011 Sep;7(9):e1002283. doi: 10.1371/journal.ppat.1002283. Epub 2011 Sep 29.

9.

Chlamydial CT441 is a PDZ domain-containing tail-specific protease that interferes with the NF-kappaB pathway of immune response.

Lad SP, Yang G, Scott DA, Wang G, Nair P, Mathison J, Reddy VS, Li E.

J Bacteriol. 2007 Sep;189(18):6619-25. Epub 2007 Jul 13.

10.

The Chlamydia protease CPAF regulates host and bacterial proteins to maintain pathogen vacuole integrity and promote virulence.

Jorgensen I, Bednar MM, Amin V, Davis BK, Ting JP, McCafferty DG, Valdivia RH.

Cell Host Microbe. 2011 Jul 21;10(1):21-32. doi: 10.1016/j.chom.2011.06.008.

11.

Secretion of the chlamydial virulence factor CPAF requires the Sec-dependent pathway.

Chen D, Lei L, Lu C, Flores R, DeLisa MP, Roberts TC, Romesberg FE, Zhong G.

Microbiology. 2010 Oct;156(Pt 10):3031-40. doi: 10.1099/mic.0.040527-0. Epub 2010 Jun 3.

12.

Characterization of CPAF critical residues and secretion during Chlamydia trachomatis infection.

Yang Z, Tang L, Sun X, Chai J, Zhong G.

Infect Immun. 2015 Jun;83(6):2234-41. doi: 10.1128/IAI.00275-15. Epub 2015 Mar 16.

13.

Chlamydia trachomatis outer membrane complex protein B (OmcB) is processed by the protease CPAF.

Hou S, Lei L, Yang Z, Qi M, Liu Q, Zhong G.

J Bacteriol. 2013 Mar;195(5):951-7. doi: 10.1128/JB.02087-12. Epub 2012 Dec 7.

14.

Human antibody responses to a Chlamydia-secreted protease factor.

Sharma J, Bosnic AM, Piper JM, Zhong G.

Infect Immun. 2004 Dec;72(12):7164-71.

15.

The host adherens junction molecule nectin-1 is degraded by chlamydial protease-like activity factor (CPAF) in Chlamydia trachomatis-infected genital epithelial cells.

Sun J, Schoborg RV.

Microbes Infect. 2009 Jan;11(1):12-9. doi: 10.1016/j.micinf.2008.10.001. Epub 2008 Oct 18.

PMID:
18983929
16.

Persistently elevated level of IL-8 in Chlamydia trachomatis infected HeLa 229 cells is dependent on intracellular available iron.

Vardhan H, Dutta R, Vats V, Gupta R, Jha R, Jha HC, Srivastava P, Bhengraj AR, Singh Mittal A.

Mediators Inflamm. 2009;2009:417658. doi: 10.1155/2009/417658. Epub 2009 May 26.

17.

Activation of the host cell proinflammatory interleukin-8 response by Chlamydia trachomatis.

Buchholz KR, Stephens RS.

Cell Microbiol. 2006 Nov;8(11):1768-79. Epub 2006 Jun 27.

PMID:
16803583
18.

The Chlamydia-Secreted Protease CPAF Promotes Chlamydial Survival in the Mouse Lower Genital Tract.

Yang Z, Tang L, Shao L, Zhang Y, Zhang T, Schenken R, Valdivia R, Zhong G.

Infect Immun. 2016 Aug 19;84(9):2697-702. doi: 10.1128/IAI.00280-16. Print 2016 Sep.

19.

Chlamydia trachomatis infection increases the expression of inflammatory tumorigenic cytokines and chemokines as well as components of the Toll-like receptor and NF-κB pathways in human prostate epithelial cells.

Sellami H, Said-Sadier N, Znazen A, Gdoura R, Ojcius DM, Hammami A.

Mol Cell Probes. 2014 Aug;28(4):147-54. doi: 10.1016/j.mcp.2014.01.006. Epub 2014 Mar 12.

PMID:
24613856
20.

ChlaDub1 of Chlamydia trachomatis suppresses NF-kappaB activation and inhibits IkappaBalpha ubiquitination and degradation.

Le Negrate G, Krieg A, Faustin B, Loeffler M, Godzik A, Krajewski S, Reed JC.

Cell Microbiol. 2008 Sep;10(9):1879-92. doi: 10.1111/j.1462-5822.2008.01178.x. Epub 2008 Jun 28.

PMID:
18503636

Supplemental Content

Support Center