Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 54

1.

Chlamydia pneumoniae disturbs cholesterol homeostasis in human THP-1 macrophages via JNK-PPARγ dependent signal transduction pathways.

Liu W, He P, Cheng B, Mei CL, Wang YF, Wan JJ.

Microbes Infect. 2010 Dec;12(14-15):1226-35. doi: 10.1016/j.micinf.2010.09.004. Epub 2010 Sep 24.

PMID:
20870032
2.

Chlamydia pneumoniae induces macrophage-derived foam cell formation by up-regulating acyl-coenzyme A: cholesterol acyltransferase 1.

He P, Mei C, Cheng B, Liu W, Wang Y, Wan J.

Microbes Infect. 2009 Feb;11(2):157-63. doi: 10.1016/j.micinf.2008.11.001. Epub 2008 Nov 18.

PMID:
19049899
3.

MAPK-PPARα/γ signal transduction pathways are involved in Chlamydia pneumoniae-induced macrophage-derived foam cell formation.

Cheng B, Wu X, Sun S, Wu Q, Mei C, Xu Q, Wu J, He P.

Microb Pathog. 2014 Apr-May;69-70:1-8. doi: 10.1016/j.micpath.2014.03.001. Epub 2014 Mar 19.

PMID:
24657322
4.

Chlamydia pneumoniae induces macrophage-derived foam cell formation via PPAR alpha and PPAR gamma-dependent pathways.

Mei CL, He P, Cheng B, Liu W, Wang YF, Wan JJ.

Cell Biol Int. 2009 Mar;33(3):301-8. doi: 10.1016/j.cellbi.2008.12.002. Epub 2008 Dec 16.

PMID:
19114110
5.
6.

Ghrelin inhibits foam cell formation via simultaneously down-regulating the expression of acyl-coenzyme A:cholesterol acyltransferase 1 and up-regulating adenosine triphosphate-binding cassette transporter A1.

Cheng B, Wan J, Wang Y, Mei C, Liu W, Ke L, He P.

Cardiovasc Pathol. 2010 Sep-Oct;19(5):e159-66. doi: 10.1016/j.carpath.2009.07.001. Epub 2009 Sep 10.

PMID:
19747856
7.

Chlamydia pneumoniae negatively regulates ABCA1 expression via TLR2-Nuclear factor-kappa B and miR-33 pathways in THP-1 macrophage-derived foam cells.

Zhao GJ, Mo ZC, Tang SL, Ouyang XP, He PP, Lv YC, Yao F, Tan YL, Xie W, Shi JF, Wang Y, Zhang M, Liu D, Tang DP, Zheng XL, Tian GP, Tang CK.

Atherosclerosis. 2014 Aug;235(2):519-25. doi: 10.1016/j.atherosclerosis.2014.05.943. Epub 2014 Jun 9.

PMID:
24953492
8.

[PPARγ signal transduction pathway in the foam cell formation induced by visfatin].

Kang J, Cheng B, Jiang L.

Sheng Li Xue Bao. 2010 Oct 25;62(5):427-32. Chinese.

9.

Imbalanced response of ATP-binding cassette transporter A1 and CD36 expression to increased oxidized low-density lipoprotein loading contributes to the development of THP-1 derived foam cells.

Liu HY, Cui HB, Chen XM, Chen XY, Wang SH, Du WP, Zhou HL, Zhao RC, Zhou Y, Liu YH, Cui CC, Huang C.

J Biochem. 2014 Jan;155(1):35-42. doi: 10.1093/jb/mvt106.

PMID:
24394674
10.

[Chlamydia pneumoniae induces THP-1-derived foam cell formation by up-regulating the expression of acyl-coenzyme A: cholesterol acyltransferase 1].

He P, Mei CL, Cheng B, Liu W, Wang YF, Wan JJ.

Zhonghua Xin Xue Guan Bing Za Zhi. 2009 May;37(5):430-5. Chinese.

PMID:
19781220
11.

Characterization of low-density lipoprotein uptake by murine macrophages exposed to Chlamydia pneumoniae.

Kalayoglu MV, Miranpuri GS, Golenbock DT, Byrne GI.

Microbes Infect. 1999 May;1(6):409-18.

PMID:
10602673
12.

Induction of macrophage foam cell formation by Chlamydia pneumoniae.

Kalayoglu MV, Byrne GI.

J Infect Dis. 1998 Mar;177(3):725-9.

PMID:
9498454
13.

AICAR inhibits PPARγ during monocyte differentiation to attenuate inflammatory responses to atherogenic lipids.

Namgaladze D, Kemmerer M, von Knethen A, Brüne B.

Cardiovasc Res. 2013 Jun 1;98(3):479-87. doi: 10.1093/cvr/cvt073. Epub 2013 Mar 25.

PMID:
23531513
14.

Resveratrol in Chlamydia pneumoniae-induced foam cell formation and interleukin-17A synthesis.

Di Pietro M, De Santis F, Schiavoni G, Filardo S, Sessa R.

J Biol Regul Homeost Agents. 2013 Apr-Jun;27(2):509-18.

PMID:
23830400
15.

Chlamydophilal antigens induce foam cell formation via c-Jun NH2-terminal kinase.

Kitazawa T, Fukushima A, Okugawa S, Yanagimoto S, Tsukada K, Tatsuno K, Koike K, Kimura S, Kishimoto T, Shibasaki Y, Ota Y.

Microbes Infect. 2007 Oct;9(12-13):1410-4. Epub 2007 Jul 15.

PMID:
17913539
16.

Chrysin inhibits foam cell formation through promoting cholesterol efflux from RAW264.7 macrophages.

Wang S, Zhang X, Liu M, Luan H, Ji Y, Guo P, Wu C.

Pharm Biol. 2015;53(10):1481-7. doi: 10.3109/13880209.2014.986688. Epub 2015 Apr 10.

PMID:
25857322
17.

Study of the insulin signaling pathways in the regulation of ACAT1 expression in cultured macrophages.

Xin C, Yan-Fu W, Ping H, Jing G, Jing-Jing W, Chun-Li M, Wei L, Bei C.

Cell Biol Int. 2009 May;33(5):602-6. doi: 10.1016/j.cellbi.2009.02.011. Epub 2009 Mar 6.

PMID:
19269342
18.

MicroRNA-19b promotes macrophage cholesterol accumulation and aortic atherosclerosis by targeting ATP-binding cassette transporter A1.

Lv YC, Tang YY, Peng J, Zhao GJ, Yang J, Yao F, Ouyang XP, He PP, Xie W, Tan YL, Zhang M, Liu D, Tang DP, Cayabyab FS, Zheng XL, Zhang DW, Tian GP, Tang CK.

Atherosclerosis. 2014 Sep;236(1):215-26. doi: 10.1016/j.atherosclerosis.2014.07.005. Epub 2014 Jul 18.

PMID:
25084135
19.

Effect of Chlamydia pneumoniae on cellular ATP content in mouse macrophages: role of Toll-like receptor 2.

Yaraei K, Campbell LA, Zhu X, Liles WC, Kuo CC, Rosenfeld ME.

Infect Immun. 2005 Jul;73(7):4323-6.

20.

Postprandial lipoproteins and the molecular regulation of vascular homeostasis.

Botham KM, Wheeler-Jones CP.

Prog Lipid Res. 2013 Oct;52(4):446-64. doi: 10.1016/j.plipres.2013.06.001. Epub 2013 Jun 15. Review.

PMID:
23774609

Supplemental Content

Support Center