Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 90

1.

Role of a cdk5-associated protein, p35, in herpes simplex virus type 1 replication in vivo.

Haenchen SD, Utter JA, Bayless AM, Dobrowsky RT, Davido DJ.

J Neurovirol. 2010 Oct;16(5):405-9. doi: 10.3109/13550284.2010.513030.

2.

In vivo reactivation of latent herpes simplex virus 1 in mice can occur in the brain before occurring in the trigeminal ganglion.

Yao HW, Ling P, Tung YY, Hsu SM, Chen SH.

J Virol. 2014 Oct;88(19):11264-70. doi: 10.1128/JVI.01616-14. Epub 2014 Jul 16.

4.

Factors affecting herpes simplex virus reactivation from the explanted mouse brain.

Yao HW, Ling P, Chen SH, Tung YY, Chen SH.

Virology. 2012 Nov 10;433(1):116-23. doi: 10.1016/j.virol.2012.07.018. Epub 2012 Aug 11.

5.

Herpes simplex virus 1 upregulates p35, alters CDK-5 localization, and stimulates CDK-5 kinase activity during acute infection in neurons.

Mostafa HH, van Loben Sels JM, Davido DJ.

J Virol. 2015 May;89(9):5171-5. doi: 10.1128/JVI.00106-15. Epub 2015 Feb 18.

6.
7.

An investigation of herpes simplex virus type 1 latency in a novel mouse dorsal root ganglion model suggests a role for ICP34.5 in reactivation.

Mattila RK, Harila K, Kangas SM, Paavilainen H, Heape AM, Mohr IJ, Hukkanen V.

J Gen Virol. 2015 Aug;96(8):2304-13. doi: 10.1099/vir.0.000138. Epub 2015 Apr 8.

PMID:
25854552
8.
9.

Depletion of the Insulator Protein CTCF Results in Herpes Simplex Virus 1 Reactivation In Vivo.

Washington SD, Edenfield SI, Lieux C, Watson ZL, Taasan SM, Dhummakupt A, Bloom DC, Neumann DM.

J Virol. 2018 May 14;92(11). pii: e00173-18. doi: 10.1128/JVI.00173-18. Print 2018 Jun 1.

10.

Herpes Simplex Virus and Interferon Signaling Induce Novel Autophagic Clusters in Sensory Neurons.

Katzenell S, Leib DA.

J Virol. 2016 Apr 14;90(9):4706-4719. doi: 10.1128/JVI.02908-15. Print 2016 May.

11.

Analyses of herpes simplex virus type 1 latency and reactivation at the single cell level using fluorescent reporter mice.

Proença JT, Nelson D, Nicoll MP, Connor V, Efstathiou S.

J Gen Virol. 2016 Mar;97(3):767-77. doi: 10.1099/jgv.0.000380. Epub 2015 Dec 22.

13.

Immunity in latent Herpes simplex virus infection.

Bystrická M, Russ G.

Acta Virol. 2005;49(3):159-67. Review.

PMID:
16178513
14.

CCCTC-Binding Factor Acts as a Heterochromatin Barrier on Herpes Simplex Viral Latent Chromatin and Contributes to Poised Latent Infection.

Lee JS, Raja P, Pan D, Pesola JM, Coen DM, Knipe DM.

MBio. 2018 Feb 6;9(1). pii: e02372-17. doi: 10.1128/mBio.02372-17.

15.

A primary neuron culture system for the study of herpes simplex virus latency and reactivation.

Kobayashi M, Kim JY, Camarena V, Roehm PC, Chao MV, Wilson AC, Mohr I.

J Vis Exp. 2012 Apr 2;(62). pii: 3823. doi: 10.3791/3823.

16.

The herpes simplex virus type 1 latency associated transcript locus is required for the maintenance of reactivation competent latent infections.

Thompson RL, Sawtell NM.

J Neurovirol. 2011 Dec;17(6):552-8. doi: 10.1007/s13365-011-0071-0. Epub 2011 Dec 30.

17.
19.

[Mechanisms of herpes simplex virus latency and reactivation].

Sun B, Wang Q, Pan D.

Zhejiang Da Xue Xue Bao Yi Xue Ban. 2019 May 25;48(1):89-101. Review. Chinese.

PMID:
31102363
20.

The virion host shutoff protein of herpes simplex virus 1 blocks the replication-independent activation of NF-κB in dendritic cells in the absence of type I interferon signaling.

Cotter CR, Kim WK, Nguyen ML, Yount JS, López CB, Blaho JA, Moran TM.

J Virol. 2011 Dec;85(23):12662-72. doi: 10.1128/JVI.05557-11. Epub 2011 Sep 21.

Supplemental Content

Support Center