Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 95

1.

Central nervous system demyelinating disease protection by the human commensal Bacteroides fragilis depends on polysaccharide A expression.

Ochoa-Repáraz J, Mielcarz DW, Ditrio LE, Burroughs AR, Begum-Haque S, Dasgupta S, Kasper DL, Kasper LH.

J Immunol. 2010 Oct 1;185(7):4101-8. doi: 10.4049/jimmunol.1001443. Epub 2010 Sep 3.

2.

A polysaccharide from the human commensal Bacteroides fragilis protects against CNS demyelinating disease.

Ochoa-Repáraz J, Mielcarz DW, Wang Y, Begum-Haque S, Dasgupta S, Kasper DL, Kasper LH.

Mucosal Immunol. 2010 Sep;3(5):487-95. doi: 10.1038/mi.2010.29. Epub 2010 Jun 9.

PMID:
20531465
3.

Role of gut commensal microflora in the development of experimental autoimmune encephalomyelitis.

Ochoa-Repáraz J, Mielcarz DW, Ditrio LE, Burroughs AR, Foureau DM, Haque-Begum S, Kasper LH.

J Immunol. 2009 Nov 15;183(10):6041-50. doi: 10.4049/jimmunol.0900747. Epub 2009 Oct 19.

4.

A commensal bacterial product elicits and modulates migratory capacity of CD39(+) CD4 T regulatory subsets in the suppression of neuroinflammation.

Wang Y, Begum-Haque S, Telesford KM, Ochoa-Repáraz J, Christy M, Kasper EJ, Kasper DL, Robson SC, Kasper LH.

Gut Microbes. 2014 Jul 1;5(4):552-61. doi: 10.4161/gmic.29797. Epub 2014 Jul 9.

PMID:
25006655
5.
6.
8.

A commensal symbiotic factor derived from Bacteroides fragilis promotes human CD39(+)Foxp3(+) T cells and Treg function.

Telesford KM, Yan W, Ochoa-Reparaz J, Pant A, Kircher C, Christy MA, Begum-Haque S, Kasper DL, Kasper LH.

Gut Microbes. 2015 Jul 4;6(4):234-42. doi: 10.1080/19490976.2015.1056973.

9.

CD24 on the resident cells of the central nervous system enhances experimental autoimmune encephalomyelitis.

Liu JQ, Carl JW Jr, Joshi PS, RayChaudhury A, Pu XA, Shi FD, Bai XF.

J Immunol. 2007 May 15;178(10):6227-35.

10.

Monoclonal antibodies to detect capsular diversity among Bacteroides fragilis isolates.

Pantosti A, Colangeli R, Tzianabos AO, Kasper DL.

J Clin Microbiol. 1995 Oct;33(10):2647-52.

12.
13.
14.

Infiltration of Th1 and Th17 cells and activation of microglia in the CNS during the course of experimental autoimmune encephalomyelitis.

Murphy AC, Lalor SJ, Lynch MA, Mills KH.

Brain Behav Immun. 2010 May;24(4):641-51. doi: 10.1016/j.bbi.2010.01.014. Epub 2010 Feb 6.

PMID:
20138983
15.

Recovery from experimental allergic encephalomyelitis is TGF-beta dependent and associated with increases in CD4+LAP+ and CD4+CD25+ T cells.

Zhang X, Reddy J, Ochi H, Frenkel D, Kuchroo VK, Weiner HL.

Int Immunol. 2006 Apr;18(4):495-503. Epub 2006 Mar 15.

PMID:
16540527
16.

Encapsulation and protection against phagocytosis by Bacteroides fragilis.

Lindberg AA, Weintraub A.

Scand J Infect Dis Suppl. 1985;46:27-32.

PMID:
3865350
17.

Anti-IL-16 therapy reduces CD4+ T-cell infiltration and improves paralysis and histopathology of relapsing EAE.

Skundric DS, Dai R, Zakarian VL, Bessert D, Skoff RP, Cruikshank WW, Kurjakovic Z.

J Neurosci Res. 2005 Mar 1;79(5):680-93.

PMID:
15682385
18.

IL-21 modulates CD4+ CD25+ regulatory T-cell homeostasis in experimental autoimmune encephalomyelitis.

Piao WH, Jee YH, Liu RL, Coons SW, Kala M, Collins M, Young DA, Campagnolo DI, Vollmer TL, Bai XF, La Cava A, Shi FD.

Scand J Immunol. 2008 Jan;67(1):37-46.

19.

Commensal oral bacteria antigens prime human dendritic cells to induce Th1, Th2 or Treg differentiation.

Kopitar AN, Ihan Hren N, Ihan A.

Oral Microbiol Immunol. 2006 Feb;21(1):1-5.

PMID:
16390334
20.

CXCL12 (SDF-1alpha) suppresses ongoing experimental autoimmune encephalomyelitis by selecting antigen-specific regulatory T cells.

Meiron M, Zohar Y, Anunu R, Wildbaum G, Karin N.

J Exp Med. 2008 Oct 27;205(11):2643-55. doi: 10.1084/jem.20080730. Epub 2008 Oct 13.

Supplemental Content

Support Center