Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 145

1.

Multi-organ expression profiling uncovers a gene module in coronary artery disease involving transendothelial migration of leukocytes and LIM domain binding 2: the Stockholm Atherosclerosis Gene Expression (STAGE) study.

Hägg S, Skogsberg J, Lundström J, Noori P, Nilsson R, Zhong H, Maleki S, Shang MM, Brinne B, Bradshaw M, Bajic VB, Samnegård A, Silveira A, Kaplan LM, Gigante B, Leander K, de Faire U, Rosfors S, Lockowandt U, Liska J, Konrad P, Takolander R, Franco-Cereceda A, Schadt EE, Ivert T, Hamsten A, Tegnér J, Björkegren J.

PLoS Genet. 2009 Dec;5(12):e1000754. doi: 10.1371/journal.pgen.1000754. Epub 2009 Dec 4.

2.

Lim domain binding 2: a key driver of transendothelial migration of leukocytes and atherosclerosis.

Shang MM, Talukdar HA, Hofmann JJ, Niaudet C, Asl HF, Jain RK, Rossignoli A, Cedergren C, Silveira A, Gigante B, Leander K, de Faire U, Hamsten A, Ruusalepp A, Melander O, Ivert T, Michoel T, Schadt EE, Betsholtz C, Skogsberg J, Björkegren JL.

Arterioscler Thromb Vasc Biol. 2014 Sep;34(9):2068-77. doi: 10.1161/ATVBAHA.113.302709. Epub 2014 Jun 12.

PMID:
24925974
3.

Notch activation induces endothelial cell senescence and pro-inflammatory response: implication of Notch signaling in atherosclerosis.

Liu ZJ, Tan Y, Beecham GW, Seo DM, Tian R, Li Y, Vazquez-Padron RI, Pericak-Vance M, Vance JM, Goldschmidt-Clermont PJ, Livingstone AS, Velazquez OC.

Atherosclerosis. 2012 Dec;225(2):296-303. doi: 10.1016/j.atherosclerosis.2012.04.010. Epub 2012 May 18.

4.

An integrated genomic-transcriptomic approach supports a role for the proto-oncogene BCL3 in atherosclerosis.

Marchetti G, Girelli D, Zerbinati C, Lunghi B, Friso S, Meneghetti S, Coen M, Gagliano T, Guastella G, Bochaton-Piallat ML, Pizzolo F, Mascoli F, Malerba G, Bovolenta M, Ferracin M, Olivieri O, Bernardi F, Martinelli N.

Thromb Haemost. 2015 Mar;113(3):655-63. doi: 10.1160/TH14-05-0466. Epub 2014 Nov 6.

PMID:
25374339
5.

MiR-135b-5p and MiR-499a-3p Promote Cell Proliferation and Migration in Atherosclerosis by Directly Targeting MEF2C.

Xu Z, Han Y, Liu J, Jiang F, Hu H, Wang Y, Liu Q, Gong Y, Li X.

Sci Rep. 2015 Jul 17;5:12276. doi: 10.1038/srep12276.

6.

Comparative gene expression analysis between coronary arteries and internal mammary arteries identifies a role for the TES gene in endothelial cell functions relevant to coronary artery disease.

Archacki SR, Angheloiu G, Moravec CS, Liu H, Topol EJ, Wang QK.

Hum Mol Genet. 2012 Mar 15;21(6):1364-73. doi: 10.1093/hmg/ddr574. Epub 2011 Dec 12.

PMID:
22156939
7.

Expression quantitative trait Loci acting across multiple tissues are enriched in inherited risk for coronary artery disease.

Foroughi Asl H, Talukdar HA, Kindt AS, Jain RK, Ermel R, Ruusalepp A, Nguyen KD, Dobrin R, Reilly DF, Schunkert H, Samani NJ, Braenne I, Erdmann J, Melander O, Qi J, Ivert T, Skogsberg J, Schadt EE, Michoel T, Björkegren JL; CARDIoGRAM Consortium.

Circ Cardiovasc Genet. 2015 Apr;8(2):305-15. doi: 10.1161/CIRCGENETICS.114.000640. Epub 2015 Jan 11.

PMID:
25578447
8.

Weighted gene co-expression network analysis identifies specific modules and hub genes related to coronary artery disease.

Liu J, Jing L, Tu X.

BMC Cardiovasc Disord. 2016 Mar 5;16:54. doi: 10.1186/s12872-016-0217-3.

9.

Gene expression profiling of coronary artery disease and its relation with different severities.

Kashyap S, Kumar S, Agarwal V, Misra DP, Phadke SR, Kapoor A.

J Genet. 2018 Sep;97(4):853-867.

10.

Differential leucocyte RNA expression in the coronary arteries compared to systemic circulation discriminates between patients with and those without coronary artery disease.

Ribalta J, Alipour A, Sánchez-Cabo F, Vallvé JC, Njo T, Álvarez R, Janssen H, Liem A, Dopazo A, Castro-Cabezas M.

Clin Investig Arterioscler. 2017 Mar - Apr;29(2):60-66. doi: 10.1016/j.arteri.2016.11.003. Epub 2017 Feb 7. English, Spanish.

PMID:
28188023
11.

The chromosome 9p21.3 coronary heart disease risk allele is associated with altered gene expression in normal heart and vascular tissues.

Pilbrow AP, Folkersen L, Pearson JF, Brown CM, McNoe L, Wang NM, Sweet WE, Tang WH, Black MA, Troughton RW, Richards AM, Franco-Cereceda A, Gabrielsen A, Eriksson P, Moravec CS, Cameron VA.

PLoS One. 2012;7(6):e39574. doi: 10.1371/journal.pone.0039574. Epub 2012 Jun 29.

12.
13.

Depot-specific overexpression of proinflammatory, redox, endothelial cell, and angiogenic genes in epicardial fat adjacent to severe stable coronary atherosclerosis.

Sacks HS, Fain JN, Cheema P, Bahouth SW, Garrett E, Wolf RY, Wolford D, Samaha J.

Metab Syndr Relat Disord. 2011 Dec;9(6):433-9. doi: 10.1089/met.2011.0024. Epub 2011 Jun 16.

PMID:
21679057
14.

Human Validation of Genes Associated With a Murine Atherosclerotic Phenotype.

Pasterkamp G, van der Laan SW, Haitjema S, Foroughi Asl H, Siemelink MA, Bezemer T, van Setten J, Dichgans M, Malik R, Worrall BB, Schunkert H, Samani NJ, de Kleijn DP, Markus HS, Hoefer IE, Michoel T, de Jager SC, Björkegren JL, den Ruijter HM, Asselbergs FW.

Arterioscler Thromb Vasc Biol. 2016 Jun;36(6):1240-6. doi: 10.1161/ATVBAHA.115.306958. Epub 2016 Apr 14. Review.

15.

Identification of a molecular signaling gene-gene regulatory network between GWAS susceptibility genes ADTRP and MIA3/TANGO1 for coronary artery disease.

Luo C, Wang F, Ren X, Ke T, Xu C, Tang B, Qin S, Yao Y, Chen Q, Wang QK.

Biochim Biophys Acta Mol Basis Dis. 2017 Jun;1863(6):1640-1653. doi: 10.1016/j.bbadis.2017.03.010. Epub 2017 Mar 21.

16.

Network-Based Identification and Prioritization of Key Regulators of Coronary Artery Disease Loci.

Zhao Y, Chen J, Freudenberg JM, Meng Q, Rajpal DK, Yang X.

Arterioscler Thromb Vasc Biol. 2016 May;36(5):928-41. doi: 10.1161/ATVBAHA.115.306725. Epub 2016 Mar 10.

17.

Chemokine CX3CL1 and its receptor CX3CR1 are associated with human atherosclerotic lesion volnerability.

Zhang X, Feng X, Cai W, Liu T, Liang Z, Sun Y, Yan C, Han Y.

Thromb Res. 2015 Jun;135(6):1147-53. doi: 10.1016/j.thromres.2015.03.020. Epub 2015 Mar 20.

PMID:
25845619
18.

Integrated systems approach identifies risk regulatory pathways and key regulators in coronary artery disease.

Zhang Y, Liu D, Wang L, Wang S, Yu X, Dai E, Liu X, Luo S, Jiang W.

J Mol Med (Berl). 2015 Dec;93(12):1381-90. doi: 10.1007/s00109-015-1315-x. Epub 2015 Jul 26.

PMID:
26208504
19.

Identification of susceptibility modules for coronary artery disease using a genome wide integrated network analysis.

Duan S, Luo X, Dong C.

Gene. 2013 Dec 1;531(2):347-54. doi: 10.1016/j.gene.2013.08.059. Epub 2013 Aug 29.

PMID:
23994195
20.

[Expression of chemokines and cytokines in atherosclerotic plaques and internal membrane of the arteries in patients with coronary artery disease].

Kukhtina NB, Aref'eva TI, Aref'eva AM, Akchurin RS, Krasnikova TL.

Ter Arkh. 2008;80(4):63-9. Russian.

PMID:
18491584

Supplemental Content

Support Center