Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 95

1.

Proteomic analysis of cells in the early stages of herpes simplex virus type-1 infection reveals widespread changes in the host cell proteome.

Antrobus R, Grant K, Gangadharan B, Chittenden D, Everett RD, Zitzmann N, Boutell C.

Proteomics. 2009 Aug;9(15):3913-27. doi: 10.1002/pmic.200900207.

PMID:
19670248
2.

Quantification of the host response proteome after herpes simplex virus type 1 infection.

Berard AR, Coombs KM, Severini A.

J Proteome Res. 2015 May 1;14(5):2121-42. doi: 10.1021/pr5012284. Epub 2015 Apr 15.

PMID:
25815715
3.

Cellular Transcriptional Coactivator RanBP10 and Herpes Simplex Virus 1 ICP0 Interact and Synergistically Promote Viral Gene Expression and Replication.

Sato Y, Kato A, Maruzuru Y, Oyama M, Kozuka-Hata H, Arii J, Kawaguchi Y.

J Virol. 2016 Jan 6;90(6):3173-86. doi: 10.1128/JVI.03043-15.

4.

Time-resolved Global and Chromatin Proteomics during Herpes Simplex Virus Type 1 (HSV-1) Infection.

Kulej K, Avgousti DC, Sidoli S, Herrmann C, Della Fera AN, Kim ET, Garcia BA, Weitzman MD.

Mol Cell Proteomics. 2017 Apr;16(4 suppl 1):S92-S107. doi: 10.1074/mcp.M116.065987. Epub 2017 Feb 8.

5.

DNA methyltransferase DNMT3A associates with viral proteins and impacts HSV-1 infection.

Rowles DL, Tsai YC, Greco TM, Lin AE, Li M, Yeh J, Cristea IM.

Proteomics. 2015 Jun;15(12):1968-82. doi: 10.1002/pmic.201500035. Epub 2015 May 7.

6.

Role of Host Cell p32 in Herpes Simplex Virus 1 De-Envelopment during Viral Nuclear Egress.

Liu Z, Kato A, Oyama M, Kozuka-Hata H, Arii J, Kawaguchi Y.

J Virol. 2015 Sep;89(17):8982-98. Epub 2015 Jun 17.

7.

Identification of TRIM27 as a novel degradation target of herpes simplex virus 1 ICP0.

Conwell SE, White AE, Harper JW, Knipe DM.

J Virol. 2015 Jan;89(1):220-9. doi: 10.1128/JVI.02635-14. Epub 2014 Oct 15.

8.

Analysis of the SUMO2 Proteome during HSV-1 Infection.

Sloan E, Tatham MH, Groslambert M, Glass M, Orr A, Hay RT, Everett RD.

PLoS Pathog. 2015 Jul 22;11(7):e1005059. doi: 10.1371/journal.ppat.1005059. eCollection 2015 Jul.

9.

A proteomic perspective of inbuilt viral protein regulation: pUL46 tegument protein is targeted for degradation by ICP0 during herpes simplex virus type 1 infection.

Lin AE, Greco TM, Döhner K, Sodeik B, Cristea IM.

Mol Cell Proteomics. 2013 Nov;12(11):3237-52. doi: 10.1074/mcp.M113.030866. Epub 2013 Aug 12.

10.

The virion host shutoff protein of herpes simplex virus 1 blocks the replication-independent activation of NF-κB in dendritic cells in the absence of type I interferon signaling.

Cotter CR, Kim WK, Nguyen ML, Yount JS, López CB, Blaho JA, Moran TM.

J Virol. 2011 Dec;85(23):12662-72. doi: 10.1128/JVI.05557-11. Epub 2011 Sep 21.

11.

Herpes simplex virus-1 disarms the unfolded protein response in the early stages of infection.

Burnett HF, Audas TE, Liang G, Lu RR.

Cell Stress Chaperones. 2012 Jul;17(4):473-83. doi: 10.1007/s12192-012-0324-8. Epub 2012 Jan 20.

12.

Cellular SNF2H chromatin-remodeling factor promotes herpes simplex virus 1 immediate-early gene expression and replication.

Bryant KF, Colgrove RC, Knipe DM.

MBio. 2011 Jan 18;2(1):e00330-10. doi: 10.1128/mBio.00330-10.

13.

Deep RNA Sequencing Reveals a Repertoire of Human Fibroblast Circular RNAs Associated with Cellular Responses to Herpes Simplex Virus 1 Infection.

Shi J, Hu N, Mo L, Zeng Z, Sun J, Hu Y.

Cell Physiol Biochem. 2018;47(5):2031-2045. doi: 10.1159/000491471. Epub 2018 Jul 4.

14.

HSV-1 Cgal+ infection promotes quaking RNA binding protein production and induces nuclear-cytoplasmic shuttling of quaking I-5 isoform in human hepatoma cells.

Sánchez-Quiles V, Mora MI, Segura V, Greco A, Epstein AL, Foschini MG, Dayon L, Sanchez JC, Prieto J, Corrales FJ, Santamaría E.

Mol Cell Proteomics. 2011 Jun;10(6):M111.009126. doi: 10.1074/mcp.M111.009126. Epub 2011 Apr 5.

15.

Selective recruitment of host factors by HSV-1 replication centers.

Lang FC, Li X, Vladmirova O, Li ZR, Chen GJ, Xiao Y, Li LH, Lu DF, Han HB, Zhou JM.

Dongwuxue Yanjiu. 2015 May 18;36(3):142-51.

16.

Identification of ribosome-associated viral and cellular basic proteins during the course of infection with herpes simplex virus type 1.

Greco A, Bienvenut W, Sanchez JC, Kindbeiter K, Hochstrasser D, Madjar JJ, Diaz JJ.

Proteomics. 2001 Apr;1(4):545-9.

PMID:
11681207
17.

The viral ubiquitin ligase ICP0 is neither sufficient nor necessary for degradation of the cellular DNA sensor IFI16 during herpes simplex virus 1 infection.

Cuchet-Lourenço D, Anderson G, Sloan E, Orr A, Everett RD.

J Virol. 2013 Dec;87(24):13422-32. doi: 10.1128/JVI.02474-13. Epub 2013 Oct 2.

18.

Role of herpes simplex virus 1 immediate early protein ICP22 in viral nuclear egress.

Maruzuru Y, Shindo K, Liu Z, Oyama M, Kozuka-Hata H, Arii J, Kato A, Kawaguchi Y.

J Virol. 2014 Jul;88(13):7445-54. doi: 10.1128/JVI.01057-14. Epub 2014 Apr 16.

19.

SAMHD1 restricts herpes simplex virus 1 in macrophages by limiting DNA replication.

Kim ET, White TE, Brandariz-Núñez A, Diaz-Griffero F, Weitzman MD.

J Virol. 2013 Dec;87(23):12949-56. doi: 10.1128/JVI.02291-13. Epub 2013 Sep 25.

20.

Multiple Roles of the Cytoplasmic Domain of Herpes Simplex Virus 1 Envelope Glycoprotein D in Infected Cells.

Arii J, Shindo K, Koyanagi N, Kato A, Kawaguchi Y.

J Virol. 2016 Oct 28;90(22):10170-10181. Print 2016 Nov 15.

Supplemental Content

Support Center