Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 101

1.

Highly pathogenic H5N1 influenza virus can enter the central nervous system and induce neuroinflammation and neurodegeneration.

Jang H, Boltz D, Sturm-Ramirez K, Shepherd KR, Jiao Y, Webster R, Smeyne RJ.

Proc Natl Acad Sci U S A. 2009 Aug 18;106(33):14063-8. doi: 10.1073/pnas.0900096106.

2.

Induction of microglia activation after infection with the non-neurotropic A/CA/04/2009 H1N1 influenza virus.

Sadasivan S, Zanin M, O'Brien K, Schultz-Cherry S, Smeyne RJ.

PLoS One. 2015 Apr 10;10(4):e0124047. doi: 10.1371/journal.pone.0124047.

3.

Comparison of temporal and spatial dynamics of seasonal H3N2, pandemic H1N1 and highly pathogenic avian influenza H5N1 virus infections in ferrets.

van den Brand JM, Stittelaar KJ, van Amerongen G, Reperant L, de Waal L, Osterhaus AD, Kuiken T.

PLoS One. 2012;7(8):e42343. doi: 10.1371/journal.pone.0042343.

4.

Inflammatory effects of highly pathogenic H5N1 influenza virus infection in the CNS of mice.

Jang H, Boltz D, McClaren J, Pani AK, Smeyne M, Korff A, Webster R, Smeyne RJ.

J Neurosci. 2012 Feb 1;32(5):1545-59. doi: 10.1523/JNEUROSCI.5123-11.2012.

5.

Domestic pigs have low susceptibility to H5N1 highly pathogenic avian influenza viruses.

Lipatov AS, Kwon YK, Sarmento LV, Lager KM, Spackman E, Suarez DL, Swayne DE.

PLoS Pathog. 2008 Jul 11;4(7):e1000102. doi: 10.1371/journal.ppat.1000102.

6.

Human H7N9 and H5N1 influenza viruses differ in induction of cytokines and tissue tropism.

Meliopoulos VA, Karlsson EA, Kercher L, Cline T, Freiden P, Duan S, Vogel P, Webby RJ, Guan Y, Peiris M, Thomas PG, Schultz-Cherry S.

J Virol. 2014 Nov;88(22):12982-91. doi: 10.1128/JVI.01571-14.

7.

Highly pathogenic avian influenza A H5N1 and pandemic H1N1 virus infections have different phenotypes in Toll-like receptor 3 knockout mice.

Leung YH, Nicholls JM, Ho CK, Sia SF, Mok CK, Valkenburg SA, Cheung P, Hui KP, Chan RW, Guan Y, Akira S, Peiris JS.

J Gen Virol. 2014 Sep;95(Pt 9):1870-9. doi: 10.1099/vir.0.066258-0.

8.

In vitro and in vivo efficacy of fluorodeoxycytidine analogs against highly pathogenic avian influenza H5N1, seasonal, and pandemic H1N1 virus infections.

Kumaki Y, Day CW, Smee DF, Morrey JD, Barnard DL.

Antiviral Res. 2011 Nov;92(2):329-40. doi: 10.1016/j.antiviral.2011.09.001.

9.

Disease severity is associated with differential gene expression at the early and late phases of infection in nonhuman primates infected with different H5N1 highly pathogenic avian influenza viruses.

Muramoto Y, Shoemaker JE, Le MQ, Itoh Y, Tamura D, Sakai-Tagawa Y, Imai H, Uraki R, Takano R, Kawakami E, Ito M, Okamoto K, Ishigaki H, Mimuro H, Sasakawa C, Matsuoka Y, Noda T, Fukuyama S, Ogasawara K, Kitano H, Kawaoka Y.

J Virol. 2014 Aug;88(16):8981-97. doi: 10.1128/JVI.00907-14.

10.

Different infection routes of avian influenza A (H5N1) virus in mice.

Sun R, Luo J, Gao Y, He H.

Integr Zool. 2009 Dec;4(4):402-8. doi: 10.1111/j.1749-4877.2009.00178.x.

11.

Neurovirulence of H5N1 infection in ferrets is mediated by multifocal replication in distinct permissive neuronal cell regions.

Plourde JR, Pyles JA, Layton RC, Vaughan SE, Tipper JL, Harrod KS.

PLoS One. 2012;7(10):e46605. doi: 10.1371/journal.pone.0046605.

12.

Induction of cytotoxic T-lymphocyte and antibody responses against highly pathogenic avian influenza virus infection in mice by inoculation of apathogenic H5N1 influenza virus particles inactivated with formalin.

Sawai T, Itoh Y, Ozaki H, Isoda N, Okamoto K, Kashima Y, Kawaoka Y, Takeuchi Y, Kida H, Ogasawara K.

Immunology. 2008 Jun;124(2):155-65. doi: 10.1111/j.1365-2567.2007.02745.x.

13.

Differential host determinants contribute to the pathogenesis of 2009 pandemic H1N1 and human H5N1 influenza A viruses in experimental mouse models.

Otte A, Sauter M, Alleva L, Baumgarte S, Klingel K, Gabriel G.

Am J Pathol. 2011 Jul;179(1):230-9. doi: 10.1016/j.ajpath.2011.03.041.

14.

Increased acid stability of the hemagglutinin protein enhances H5N1 influenza virus growth in the upper respiratory tract but is insufficient for transmission in ferrets.

Zaraket H, Bridges OA, Duan S, Baranovich T, Yoon SW, Reed ML, Salomon R, Webby RJ, Webster RG, Russell CJ.

J Virol. 2013 Sep;87(17):9911-22. doi: 10.1128/JVI.01175-13.

15.

Vaccination against human influenza A/H3N2 virus prevents the induction of heterosubtypic immunity against lethal infection with avian influenza A/H5N1 virus.

Bodewes R, Kreijtz JH, Baas C, Geelhoed-Mieras MM, de Mutsert G, van Amerongen G, van den Brand JM, Fouchier RA, Osterhaus AD, Rimmelzwaan GF.

PLoS One. 2009;4(5):e5538. doi: 10.1371/journal.pone.0005538.

16.

Acute murine H5N1 influenza A encephalitis.

Bissel SJ, Giles BM, Wang G, Olevian DC, Ross TM, Wiley CA.

Brain Pathol. 2012 Mar;22(2):150-8. doi: 10.1111/j.1750-3639.2011.00514.x.

17.

Mammalian adaptive mutations of the PA protein of highly pathogenic avian H5N1 influenza virus.

Yamaji R, Yamada S, Le MQ, Ito M, Sakai-Tagawa Y, Kawaoka Y.

J Virol. 2015 Apr;89(8):4117-25. doi: 10.1128/JVI.03532-14.

18.

Multiple routes of invasion of wild-type Clade 1 highly pathogenic avian influenza H5N1 virus into the central nervous system (CNS) after intranasal exposure in ferrets.

Yamada M, Bingham J, Payne J, Rookes J, Lowther S, Haining J, Robinson R, Johnson D, Middleton D.

Acta Neuropathol. 2012 Oct;124(4):505-16. doi: 10.1007/s00401-012-1010-8.

PMID:
22763823
19.

Mouse lung-adapted mutation of E190G in hemagglutinin from H5N1 influenza virus contributes to attenuation in mice.

Han P, Hu Y, Sun W, Zhang S, Li Y, Wu X, Yang Y, Zhu Q, Jiang T, Li J, Qin C.

J Med Virol. 2015 Nov;87(11):1816-22. doi: 10.1002/jmv.24257.

PMID:
26089289
20.

Role of host cytokine responses in the pathogenesis of avian H5N1 influenza viruses in mice.

Szretter KJ, Gangappa S, Lu X, Smith C, Shieh WJ, Zaki SR, Sambhara S, Tumpey TM, Katz JM.

J Virol. 2007 Mar;81(6):2736-44.

Items per page

Supplemental Content

Support Center