Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 601

1.

The hemodynamics of cognitive control: the level of concentration of oxygenated hemoglobin in the superior prefrontal cortex varies as a function of performance in a modified Stroop task.

León-Carrion J, Damas-López J, Martín-Rodríguez JF, Domínguez-Roldán JM, Murillo-Cabezas F, Barroso Y Martin JM, Domínguez-Morales MR.

Behav Brain Res. 2008 Nov 21;193(2):248-56. doi: 10.1016/j.bbr.2008.06.013. Epub 2008 Jun 19.

PMID:
18606191
2.

Hemodynamic differences in the activation of the prefrontal cortex: attention vs. higher cognitive processing.

Toichi M, Findling RL, Kubota Y, Calabrese JR, Wiznitzer M, McNamara NK, Yamamoto K.

Neuropsychologia. 2004;42(5):698-706.

PMID:
14725806
3.

Prefrontal activation due to Stroop interference increases during development--an event-related fNIRS study.

Schroeter ML, Zysset S, Wahl M, von Cramon DY.

Neuroimage. 2004 Dec;23(4):1317-25.

PMID:
15589096
4.

Spatiotemporal characteristics of hemodynamic changes in the human lateral prefrontal cortex during working memory tasks.

Hoshi Y, Tsou BH, Billock VA, Tanosaki M, Iguchi Y, Shimada M, Shinba T, Yamada Y, Oda I.

Neuroimage. 2003 Nov;20(3):1493-504.

PMID:
14642462
5.

Gender-specific hemodynamics in prefrontal cortex during a verbal working memory task by near-infrared spectroscopy.

Li T, Luo Q, Gong H.

Behav Brain Res. 2010 May 1;209(1):148-53. doi: 10.1016/j.bbr.2010.01.033. Epub 2010 Jan 29.

PMID:
20117145
6.

Shortening intertrial intervals in event-related cognitive studies with near-infrared spectroscopy.

Schroeter ML, Zysset S, von Cramon DY.

Neuroimage. 2004 May;22(1):341-6.

PMID:
15110024
7.

Near-infrared spectroscopy can detect brain activity during a color-word matching Stroop task in an event-related design.

Schroeter ML, Zysset S, Kupka T, Kruggel F, Yves von Cramon D.

Hum Brain Mapp. 2002 Sep;17(1):61-71.

PMID:
12203689
8.

On temporal connectivity of PFC via Gauss-Markov modeling of fNIRS signals.

Aydöre S, Mihçak MK, Ciftçi K, Akin A.

IEEE Trans Biomed Eng. 2010 Mar;57(3):761-8. doi: 10.1109/TBME.2009.2020792. Epub 2009 Apr 28.

PMID:
19403360
9.

Neural representation of preference relationships.

Shimokawa T, Misawa T, Suzuki K.

Neuroreport. 2008 Oct 29;19(16):1557-61. doi: 10.1097/WNR.0b013e32831126c6.

PMID:
18815582
10.

Right prefrontal brain activation due to Stroop interference is altered in attention-deficit hyperactivity disorder - A functional near-infrared spectroscopy study.

Jourdan Moser S, Cutini S, Weber P, Schroeter ML.

Psychiatry Res. 2009 Sep 30;173(3):190-5. doi: 10.1016/j.pscychresns.2008.10.003. Epub 2009 Aug 6.

PMID:
19664910
11.

A semi-immersive virtual reality incremental swing balance task activates prefrontal cortex: a functional near-infrared spectroscopy study.

Basso Moro S, Bisconti S, Muthalib M, Spezialetti M, Cutini S, Ferrari M, Placidi G, Quaresima V.

Neuroimage. 2014 Jan 15;85 Pt 1:451-60. doi: 10.1016/j.neuroimage.2013.05.031. Epub 2013 May 17.

PMID:
23684867
12.

Decomposing interference during Stroop performance into different conflict factors: an event-related fMRI study.

Melcher T, Gruber O.

Cortex. 2009 Feb;45(2):189-200. doi: 10.1016/j.cortex.2007.06.004. Epub 2008 Jan 31.

PMID:
19150520
13.

Activation of the prefrontal cortex during the Trail-Making Test detected with multichannel near-infrared spectroscopy.

Shibuya-Tayoshi S, Sumitani S, Kikuchi K, Tanaka T, Tayoshi S, Ueno S, Ohmori T.

Psychiatry Clin Neurosci. 2007 Dec;61(6):616-21.

14.

Differential frontal activation during exogenous and endogenous orientation of visuospatial attention. A near-infrared spectroscopy study.

Takahashi M, Ikegami M.

Neuropsychobiology. 2008;58(2):55-64. doi: 10.1159/000159773. Epub 2008 Oct 3.

15.

Cognitive control mechanisms resolve conflict through cortical amplification of task-relevant information.

Egner T, Hirsch J.

Nat Neurosci. 2005 Dec;8(12):1784-90. Epub 2005 Nov 6.

PMID:
16286928
16.

Stroop performance in bipolar disorder: further evidence for abnormalities in the ventral prefrontal cortex.

Kronhaus DM, Lawrence NS, Williams AM, Frangou S, Brammer MJ, Williams SC, Andrew CM, Phillips ML.

Bipolar Disord. 2006 Feb;8(1):28-39.

PMID:
16411978
17.

Segregation of function in the lateral prefrontal cortex during visual object working memory.

Yoon JH, Hoffman JN, D'Esposito M.

Brain Res. 2007 Dec 12;1184:217-25. Epub 2007 Oct 6.

PMID:
17980353
18.

Prefrontal cortex dysfunction during cognitive tests evidenced by functional near-infrared spectroscopy.

Quaresima V, Giosuè P, Roncone R, Casacchia M, Ferrari M.

Psychiatry Res. 2009 Mar 31;171(3):252-7. doi: 10.1016/j.pscychresns.2008.02.002. Epub 2009 Feb 20.

PMID:
19230624
19.

Prefrontal brain function in children with anorexia nervosa: a near-infrared spectroscopy study.

Nagamitsu S, Araki Y, Ioji T, Yamashita F, Ozono S, Kouno M, Iizuka C, Hara M, Shibuya I, Ohya T, Yamashita Y, Tsuda A, Kakuma T, Matsuishi T.

Brain Dev. 2011 Jan;33(1):35-44. doi: 10.1016/j.braindev.2009.12.010. Epub 2010 Feb 2.

PMID:
20129748
20.

Prefrontal cerebral activity during a simple "rock, paper, scissors" task measured by the noninvasive near-infrared spectroscopy method.

Kikuchi S, Iwata K, Onishi Y, Kubota F, Nisijima K, Tamai H, Koizumi Y, Watanabe E, Kato S.

Psychiatry Res. 2007 Dec 15;156(3):199-208. Epub 2007 Nov 5.

PMID:
17976959

Supplemental Content

Support Center