Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 291

1.

Eukaryotic translation initiation machinery can operate in a bacterial-like mode without eIF2.

Terenin IM, Dmitriev SE, Andreev DE, Shatsky IN.

Nat Struct Mol Biol. 2008 Aug;15(8):836-41. doi: 10.1038/nsmb.1445. Epub 2008 Jul 6.

PMID:
18604219
2.

Coordinated assembly of human translation initiation complexes by the hepatitis C virus internal ribosome entry site RNA.

Ji H, Fraser CS, Yu Y, Leary J, Doudna JA.

Proc Natl Acad Sci U S A. 2004 Dec 7;101(49):16990-5. Epub 2004 Nov 24.

3.

Eukaryotic initiation factor 5B: a new player for the anti-hepatitis C virus effect of ribavirin?

Galmozzi E, Aghemo A, Colombo M.

Med Hypotheses. 2012 Oct;79(4):471-3. doi: 10.1016/j.mehy.2012.06.026. Epub 2012 Jul 21.

PMID:
22824093
4.

Viral stress-inducible protein p56 inhibits translation by blocking the interaction of eIF3 with the ternary complex eIF2.GTP.Met-tRNAi.

Hui DJ, Bhasker CR, Merrick WC, Sen GC.

J Biol Chem. 2003 Oct 10;278(41):39477-82. Epub 2003 Jul 28.

5.

The pathway of HCV IRES-mediated translation initiation.

Otto GA, Puglisi JD.

Cell. 2004 Oct 29;119(3):369-80.

7.

The joining of ribosomal subunits in eukaryotes requires eIF5B.

Pestova TV, Lomakin IB, Lee JH, Choi SK, Dever TE, Hellen CU.

Nature. 2000 Jan 20;403(6767):332-5.

PMID:
10659855
9.

Direct eIF2-eIF3 contact in the multifactor complex is important for translation initiation in vivo.

Valásek L, Nielsen KH, Hinnebusch AG.

EMBO J. 2002 Nov 1;21(21):5886-98.

10.

Specific interaction of eukaryotic translation initiation factor 5 (eIF5) with the beta-subunit of eIF2.

Das S, Maiti T, Das K, Maitra U.

J Biol Chem. 1997 Dec 12;272(50):31712-8.

11.

Study of translational control of eukaryotic gene expression using yeast.

Hinnebusch AG, Asano K, Olsen DS, Phan L, Nielsen KH, Valásek L.

Ann N Y Acad Sci. 2004 Dec;1038:60-74.

PMID:
15838098
12.

Functional significance and mechanism of eIF5-promoted GTP hydrolysis in eukaryotic translation initiation.

Das S, Maitra U.

Prog Nucleic Acid Res Mol Biol. 2001;70:207-31. Review.

PMID:
11642363
14.

eIF2-dependent and eIF2-independent modes of initiation on the CSFV IRES: a common role of domain II.

Pestova TV, de Breyne S, Pisarev AV, Abaeva IS, Hellen CU.

EMBO J. 2008 Apr 9;27(7):1060-72. doi: 10.1038/emboj.2008.49. Epub 2008 Mar 13.

15.

A cross-kingdom internal ribosome entry site reveals a simplified mode of internal ribosome entry.

Terenin IM, Dmitriev SE, Andreev DE, Royall E, Belsham GJ, Roberts LO, Shatsky IN.

Mol Cell Biol. 2005 Sep;25(17):7879-88.

16.

Eukaryotic initiation factor eIF2.

Kimball SR.

Int J Biochem Cell Biol. 1999 Jan;31(1):25-9. Review.

PMID:
10216940
17.

Translation initiation by factor-independent binding of eukaryotic ribosomes to internal ribosomal entry sites.

Pisarev AV, Shirokikh NE, Hellen CU.

C R Biol. 2005 Jul;328(7):589-605. Review.

PMID:
15992743
18.

Activities of Ligatin and MCT-1/DENR in eukaryotic translation initiation and ribosomal recycling.

Skabkin MA, Skabkina OV, Dhote V, Komar AA, Hellen CU, Pestova TV.

Genes Dev. 2010 Aug 15;24(16):1787-801. doi: 10.1101/gad.1957510.

19.

Conserved bipartite motifs in yeast eIF5 and eIF2Bepsilon, GTPase-activating and GDP-GTP exchange factors in translation initiation, mediate binding to their common substrate eIF2.

Asano K, Krishnamoorthy T, Phan L, Pavitt GD, Hinnebusch AG.

EMBO J. 1999 Mar 15;18(6):1673-88. Erratum in: EMBO J 1999 May 4;18(9):2670.

20.

Initiation of protein synthesis from the A site of the ribosome.

Wilson JE, Pestova TV, Hellen CU, Sarnow P.

Cell. 2000 Aug 18;102(4):511-20.

Supplemental Content

Support Center