Format

Send to

Choose Destination
Z Med Phys. 2017 Mar;27(1):6-12. doi: 10.1016/j.zemedi.2016.05.002. Epub 2016 Jun 14.

Magnetic resonance imaging for precise radiotherapy of small laboratory animals.

Author information

1
Universitätsklinikum Hamburg-Eppendorf, Ambulanzzentrum des UKE GmbH, Bereich Strahlentherapie, Martinistraße 52, 20246 Hamburg, Germany; Universitätsklinikum Hamburg-Eppendorf, Zentrum für Experimentelle Medizin, Institut für Anatomie und Experimentelle Morphologie, Martinistraße 52, 20246 Hamburg, Germany. Electronic address: frenzel@uke.uni-hamburg.de.
2
Universitätsklinikum Hamburg-Eppendorf, Zentrum für Radiologie und Endoskopie, Klinik und Poliklinik für Diagnostische und Interventionelle Radiologie, Martinistraße 52, 20246 Hamburg, Germany.
3
Universitätsklinikum Hamburg-Eppendorf, Onkologisches Zentrum, Klinik und Poliklinik für Strahlentherapie und Radioonkologie, Martinistraße 52, 20246 Hamburg, Germany.
4
Universitätsklinikum Hamburg-Eppendorf, Zentrum für Experimentelle Medizin, Institut für Anatomie und Experimentelle Morphologie, Martinistraße 52, 20246 Hamburg, Germany.
5
Universitätsklinikum Hamburg-Eppendorf, Ambulanzzentrum des UKE GmbH, Bereich Strahlentherapie, Martinistraße 52, 20246 Hamburg, Germany.

Abstract

AIMS:

Radiotherapy of small laboratory animals (SLA) is often not as precisely applied as in humans. Here we describe the use of a dedicated SLA magnetic resonance imaging (MRI) scanner for precise tumor volumetry, radiotherapy treatment planning, and diagnostic imaging in order to make the experiments more accurate.

METHODS AND MATERIALS:

Different human cancer cells were injected at the lower trunk of pfp/rag2 and SCID mice to allow for local tumor growth. Data from cross sectional MRI scans were transferred to a clinical treatment planning system (TPS) for humans. Manual palpation of the tumor size was compared with calculated tumor size of the TPS and with tumor weight at necropsy. As a feasibility study MRI based treatment plans were calculated for a clinical 6MV linear accelerator using a micro multileaf collimator (μMLC). In addition, diagnostic MRI scans were used to investigate animals which did clinical poorly during the study.

RESULTS:

MRI is superior in precise tumor volume definition whereas manual palpation underestimates their size. Cross sectional MRI allow for treatment planning so that conformal irradiation of mice with a clinical linear accelerator using a μMLC is in principle feasible. Several internal pathologies were detected during the experiment using the dedicated scanner.

CONCLUSION:

MRI is a key technology for precise radiotherapy of SLA. The scanning protocols provided are suited for tumor volumetry, treatment planning, and diagnostic imaging.

KEYWORDS:

Bestrahlungsplanung; Kleintierbestrahlung; Magnetic resonance imaging; Magnetresonanztomographie; Tumorvolumetrie; small animal irradiation; treatment planning; tumor volumetry

PMID:
27312789
DOI:
10.1016/j.zemedi.2016.05.002
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center