Send to

Choose Destination
J Microw Power. 1979 Dec;14(4):383-8.

Preliminary studies: far-field microwave dosimetric measurements of a full-scale model of man.


Measurements of microwave heating were made in a full-size, upright human model. The 75-Kg model, composed of electrically simulated muscle, was placed in the far-zone of a standard-gain horn inside an absorber-lined chamber. Pulsed energy at 1.29 GHz was obtained from a military radar transmitter (AN/TPS-1G) and produced radiation at 6-14 mW/cm2 average power density at the location of the model. Microwave heating at the front surface was measured at nine locations on the phantom. Measurements at several depths within the phantom were also made at a central location to gain information on the depth-of-penetration of the microwave energy. Results of the frontal surface measurements and of the penetration study permitted a calculation of the approximate whole-body average specific absorption rate (SAR) when the model's long axis was parallel to the E-field vector. For a normalized power density of 1 mW/cm2 at a frequency of 1.29 GHz, the whole-body average SAR approximated 0.03 W/Kg. This result agrees well with theoretical predictions based on absorption in prolate spheroidal models of man.

[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center