Format

Send to

Choose Destination
Plant Cell. 2013 Sep;25(9):3280-95. doi: 10.1105/tpc.113.114405. Epub 2013 Sep 30.

The more the merrier: recent hybridization and polyploidy in cardamine.

Author information

1
Research Group Plant Cytogenomics, Central European Institute of Technology (CEITEC), Masaryk University, CZ-62500 Brno, Czech Republic.

Abstract

This article describes the use of cytogenomic and molecular approaches to explore the origin and evolution of Cardamine schulzii, a textbook example of a recent allopolyploid, in its ~110-year history of human-induced hybridization and allopolyploidy in the Swiss Alps. Triploids are typically viewed as bridges between diploids and tetraploids but rarely as parental genomes of high-level hybrids and polyploids. The genome of the triploid semifertile hybrid Cardamine × insueta (2n = 24, RRA) was shown to combine the parental genomes of two diploid (2n = 2x = 16) species, Cardamine amara (AA) and Cardamine rivularis (RR). These parental genomes have remained structurally stable within the triploid genome over the >100 years since its origin. Furthermore, we provide compelling evidence that the alleged recent polyploid C. schulzii is not an autohexaploid derivative of C. × insueta. Instead, at least two hybridization events involving C. × insueta and the hypotetraploid Cardamine pratensis (PPPP, 2n = 4x-2 = 30) have resulted in the origin of the trigenomic hypopentaploid (2n = 5x-2 = 38, PPRRA) and hypohexaploid (2n = 6x-2 = 46, PPPPRA). These data show that the semifertile triploid hybrid can promote a merger of three different genomes and demonstrate how important it is to reexamine the routinely repeated textbook examples using modern techniques.

PMID:
24082009
PMCID:
PMC3809532
DOI:
10.1105/tpc.113.114405
[Indexed for MEDLINE]
Free PMC Article

Publication type, MeSH terms, Secondary source ID

Publication type

MeSH terms

Secondary source ID

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center