Format

Send to

Choose Destination
Proteomics Clin Appl. 2007 Oct;1(10):1306-15. doi: 10.1002/prca.200700049. Epub 2007 Sep 11.

Differential valine metabolism in adipose tissue of low and high fat-oxidizing obese subjects.

Author information

1
Department of Human Biology, Nutrition and Toxicology, Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands.

Abstract

Differences in fat metabolism are of importance in relation to energy balance. Low fat-oxidizers (LFO) are thought to be more prone for developing obesity. We studied whether LFO have different fasting adipose tissue (AT) protein profiles than high fat-oxidizers (HFO). Six LFO and six HFO subjects were selected from an obese group (n = 99, body mass index>30 kg/m(2) ) taking part in a multi-center study (Nutrient-Gene interaction in human obesity) based on the postprandial fat oxidation capacity after a high fat load. AT protein profiles were studied by 2-DE. Differential proteins were clustered with MAPPfinder according to their function. Protein profiles of purified blood cells and adipocytes served to confine the comparison to adipocyte-specific proteins in AT profiles of LFO and HFO subjects. LFO had increased mitochondrial ROS scavengers possibly related to long-chain unsaturated fatty acid-induced increases in mitochondrial ROS-production. Carbohydrate oxidation seemed to be reduced since expression of several proteins from the glycolysis pathway was lower in LFO. Up-regulation of the valine catabolism at the level of methylmalonate-semialdehyde dehydrogenase appeared to be (part of) the compensatory mechanism. In conclusion, the fasting AT protein profile of LFO and HFO differ at the level of ROS scavenging, the glycolysis pathway and valine metabolism.

PMID:
21136627
DOI:
10.1002/prca.200700049

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center