Format

Send to

Choose Destination
PLoS One. 2017 Feb 3;12(2):e0171600. doi: 10.1371/journal.pone.0171600. eCollection 2017.

A dual transcriptional reporter and CDK-activity sensor marks cell cycle entry and progression in C. elegans.

Author information

1
Developmental Biology, Department of Biology, Faculty of Science, Utrecht University Padualaan 8, CH Utrecht, The Netherlands.

Abstract

Development, tissue homeostasis and tumor suppression depend critically on the correct regulation of cell division. Central in the cell division process is the decision whether to enter the next cell cycle and commit to going through the S and M phases, or to remain temporarily or permanently arrested. Cell cycle studies in genetic model systems could greatly benefit from visualizing cell cycle commitment in individual cells without the need of fixation. Here, we report the development and characterization of a reporter to monitor cell cycle entry in the nematode C. elegans. This reporter combines the mcm-4 promoter, to reveal Rb/E2F-mediated transcriptional control, and a live-cell sensor for CDK-activity. The CDK sensor was recently developed for use in human cells and consists of a DNA Helicase fragment fused to eGFP. Upon phosphorylation by CDKs, this fusion protein changes in localization from the nucleus to the cytoplasm. The combined regulation of transcription and subcellular localization enabled us to visualize the moment of cell cycle entry in dividing seam cells during C. elegans larval development. This reporter is the first to reflect cell cycle commitment in C. elegans and will help further genetic studies of the mechanisms that underlie cell cycle entry and exit.

PMID:
28158315
PMCID:
PMC5291519
DOI:
10.1371/journal.pone.0171600
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Public Library of Science Icon for PubMed Central
Loading ...
Support Center