Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 91

1.

The role of the acyl-CoA thioesterase "YciA" in the production of (R)-3-hydroxybutyrate by recombinant Escherichia coli.

Guevara-Martínez M, Perez-Zabaleta M, Gustavsson M, Quillaguamán J, Larsson G, van Maris AJA.

Appl Microbiol Biotechnol. 2019 Mar 5. doi: 10.1007/s00253-019-09707-0. [Epub ahead of print]

PMID:
30834961
2.

Molecular optimization of autotransporter-based tyrosinase surface display.

Hörnström D, Larsson G, van Maris AJA, Gustavsson M.

Biochim Biophys Acta Biomembr. 2019 Feb 1;1861(2):486-494. doi: 10.1016/j.bbamem.2018.11.012. Epub 2018 Dec 4.

3.

Continuous removal of the model pharmaceutical chloroquine from water using melanin-covered Escherichia coli in a membrane bioreactor.

Lindroos M, Hörnström D, Larsson G, Gustavsson M, van Maris AJA.

J Hazard Mater. 2019 Mar 5;365:74-80. doi: 10.1016/j.jhazmat.2018.10.081. Epub 2018 Oct 29.

4.

Evaluation of a novel cloud-based software platform for structured experiment design and linked data analytics.

Juergens H, Niemeijer M, Jennings-Antipov LD, Mans R, Morel J, van Maris AJA, Pronk JT, Gardner TS.

Sci Data. 2018 Oct 3;5:180195. doi: 10.1038/sdata.2018.195.

5.

Reassessment of requirements for anaerobic xylose fermentation by engineered, non-evolved Saccharomyces cerevisiae strains.

Bracher JM, Martinez-Rodriguez OA, Dekker WJC, Verhoeven MD, van Maris AJA, Pronk JT.

FEMS Yeast Res. 2019 Jan 1;19(1). doi: 10.1093/femsyr/foy104.

6.

Laboratory evolution and physiological analysis of Saccharomyces cerevisiae strains dependent on sucrose uptake via the Phaseolus vulgaris Suf1 transporter.

Marques WL, van der Woude LN, Luttik MAH, van den Broek M, Nijenhuis JM, Pronk JT, van Maris AJA, Mans R, Gombert AK.

Yeast. 2018 Dec;35(12):639-652. doi: 10.1002/yea.3357. Epub 2018 Oct 15.

PMID:
30221387
7.

Identification of novel genes involved in acetic acid tolerance of Saccharomyces cerevisiae using pooled-segregant RNA sequencing.

Fernández-Niño M, Pulido S, Stefanoska D, Pérez C, González-Ramos D, van Maris AJA, Marchal K, Nevoigt E, Swinnen S.

FEMS Yeast Res. 2018 Dec 1;18(8). doi: 10.1093/femsyr/foy100.

PMID:
30219856
8.

Fermentation of glucose-xylose-arabinose mixtures by a synthetic consortium of single-sugar-fermenting Saccharomyces cerevisiae strains.

Verhoeven MD, de Valk SC, Daran JG, van Maris AJA, Pronk JT.

FEMS Yeast Res. 2018 Dec 1;18(8). doi: 10.1093/femsyr/foy075.

PMID:
30010916
9.

Galacturonate Metabolism in Anaerobic Chemostat Enrichment Cultures: Combined Fermentation and Acetogenesis by the Dominant sp. nov. "Candidatus Galacturonibacter soehngenii".

Valk LC, Frank J, de la Torre-Cortés P, van 't Hof M, van Maris AJA, Pronk JT, van Loosdrecht MCM.

Appl Environ Microbiol. 2018 Aug 31;84(18). pii: e01370-18. doi: 10.1128/AEM.01370-18. Print 2018 Sep 15.

10.

Laboratory evolution of a glucose-phosphorylation-deficient, arabinose-fermenting S. cerevisiae strain reveals mutations in GAL2 that enable glucose-insensitive l-arabinose uptake.

Verhoeven MD, Bracher JM, Nijland JG, Bouwknegt J, Daran JG, Driessen AJM, van Maris AJA, Pronk JT.

FEMS Yeast Res. 2018 Sep 1;18(6). doi: 10.1093/femsyr/foy062.

11.

A Simulator-Assisted Workshop for Teaching Chemostat Cultivation in Academic Classes on Microbial Physiology.

Hakkaart XDV, Pronk JT, van Maris AJA.

J Microbiol Biol Educ. 2017 Oct 4;18(3). pii: 18.3.51. doi: 10.1128/jmbe.v18i3.1292. eCollection 2017.

12.

Laboratory evolution for forced glucose-xylose co-consumption enables identification of mutations that improve mixed-sugar fermentation by xylose-fermenting Saccharomyces cerevisiae.

Papapetridis I, Verhoeven MD, Wiersma SJ, Goudriaan M, van Maris AJA, Pronk JT.

FEMS Yeast Res. 2018 Sep 1;18(6). doi: 10.1093/femsyr/foy056.

13.

The Penicillium chrysogenum transporter PcAraT enables high-affinity, glucose-insensitive l-arabinose transport in Saccharomyces cerevisiae.

Bracher JM, Verhoeven MD, Wisselink HW, Crimi B, Nijland JG, Driessen AJM, Klaassen P, van Maris AJA, Daran JG, Pronk JT.

Biotechnol Biofuels. 2018 Mar 13;11:63. doi: 10.1186/s13068-018-1047-6. eCollection 2018.

14.

Optimizing anaerobic growth rate and fermentation kinetics in Saccharomyces cerevisiae strains expressing Calvin-cycle enzymes for improved ethanol yield.

Papapetridis I, Goudriaan M, Vázquez Vitali M, de Keijzer NA, van den Broek M, van Maris AJA, Pronk JT.

Biotechnol Biofuels. 2018 Jan 25;11:17. doi: 10.1186/s13068-017-1001-z. eCollection 2018.

15.

Combined engineering of disaccharide transport and phosphorolysis for enhanced ATP yield from sucrose fermentation in Saccharomyces cerevisiae.

Marques WL, Mans R, Henderson RK, Marella ER, Horst JT, Hulster E, Poolman B, Daran JM, Pronk JT, Gombert AK, van Maris AJA.

Metab Eng. 2018 Jan;45:121-133. doi: 10.1016/j.ymben.2017.11.012. Epub 2017 Dec 2.

PMID:
29196124
16.

A CRISPR/Cas9-based exploration into the elusive mechanism for lactate export in Saccharomyces cerevisiae.

Mans R, Hassing EJ, Wijsman M, Giezekamp A, Pronk JT, Daran JM, van Maris AJA.

FEMS Yeast Res. 2017 Dec 1;17(8). doi: 10.1093/femsyr/fox085.

PMID:
29145596
17.

Saccharomyces cerevisiae strains for second-generation ethanol production: from academic exploration to industrial implementation.

Jansen MLA, Bracher JM, Papapetridis I, Verhoeven MD, de Bruijn H, de Waal PP, van Maris AJA, Klaassen P, Pronk JT.

FEMS Yeast Res. 2017 Aug 1;17(5). doi: 10.1093/femsyr/fox044. Review.

18.

Laboratory Evolution of a Biotin-Requiring Saccharomyces cerevisiae Strain for Full Biotin Prototrophy and Identification of Causal Mutations.

Bracher JM, de Hulster E, Koster CC, van den Broek M, Daran JG, van Maris AJA, Pronk JT.

Appl Environ Microbiol. 2017 Aug 1;83(16). pii: e00892-17. doi: 10.1128/AEM.00892-17. Print 2017 Aug 15.

19.

Metabolic engineering strategies for optimizing acetate reduction, ethanol yield and osmotolerance in Saccharomyces cerevisiae.

Papapetridis I, van Dijk M, van Maris AJA, Pronk JT.

Biotechnol Biofuels. 2017 Apr 26;10:107. doi: 10.1186/s13068-017-0791-3. eCollection 2017.

20.

Membrane potential independent transport of NH3 in the absence of ammonium permeases in Saccharomyces cerevisiae.

Cueto-Rojas HF, Milne N, van Helmond W, Pieterse MM, van Maris AJA, Daran JM, Wahl SA.

BMC Syst Biol. 2017 Apr 17;11(1):49. doi: 10.1186/s12918-016-0381-1.

21.

Mutations in PMR1 stimulate xylose isomerase activity and anaerobic growth on xylose of engineered Saccharomyces cerevisiae by influencing manganese homeostasis.

Verhoeven MD, Lee M, Kamoen L, van den Broek M, Janssen DB, Daran JG, van Maris AJ, Pronk JT.

Sci Rep. 2017 Apr 12;7:46155. doi: 10.1038/srep46155.

22.

Elimination of sucrose transport and hydrolysis in Saccharomyces cerevisiae: a platform strain for engineering sucrose metabolism.

Marques WL, Mans R, Marella ER, Cordeiro RL, van den Broek M, Daran JG, Pronk JT, Gombert AK, van Maris AJ.

FEMS Yeast Res. 2017 Jan 1;17(1). doi: 10.1093/femsyr/fox006.

23.

Specific Arabidopsis thaliana malic enzyme isoforms can provide anaplerotic pyruvate carboxylation function in Saccharomyces cerevisiae.

Badia MB, Mans R, Lis AV, Tronconi MA, Arias CL, Maurino VG, Andreo CS, Drincovich MF, van Maris AJ, Gerrard Wheeler MC.

FEBS J. 2017 Feb;284(4):654-665. doi: 10.1111/febs.14013. Epub 2017 Feb 1.

24.

A new laboratory evolution approach to select for constitutive acetic acid tolerance in Saccharomyces cerevisiae and identification of causal mutations.

González-Ramos D, Gorter de Vries AR, Grijseels SS, van Berkum MC, Swinnen S, van den Broek M, Nevoigt E, Daran JM, Pronk JT, van Maris AJ.

Biotechnol Biofuels. 2016 Aug 12;9:173. doi: 10.1186/s13068-016-0583-1. eCollection 2016.

25.

Maintenance-energy requirements and robustness of Saccharomyces cerevisiae at aerobic near-zero specific growth rates.

Vos T, Hakkaart XD, de Hulster EA, van Maris AJ, Pronk JT, Daran-Lapujade P.

Microb Cell Fact. 2016 Jun 17;15(1):111. doi: 10.1186/s12934-016-0501-z.

26.

Requirements for Carnitine Shuttle-Mediated Translocation of Mitochondrial Acetyl Moieties to the Yeast Cytosol.

van Rossum HM, Kozak BU, Niemeijer MS, Dykstra JC, Luttik MA, Daran JM, van Maris AJ, Pronk JT.

MBio. 2016 May 3;7(3). pii: e00520-16. doi: 10.1128/mBio.00520-16.

27.

Improving ethanol yield in acetate-reducing Saccharomyces cerevisiae by cofactor engineering of 6-phosphogluconate dehydrogenase and deletion of ALD6.

Papapetridis I, van Dijk M, Dobbe AP, Metz B, Pronk JT, van Maris AJ.

Microb Cell Fact. 2016 Apr 26;15:67. doi: 10.1186/s12934-016-0465-z.

28.

Engineering cytosolic acetyl-coenzyme A supply in Saccharomyces cerevisiae: Pathway stoichiometry, free-energy conservation and redox-cofactor balancing.

van Rossum HM, Kozak BU, Pronk JT, van Maris AJA.

Metab Eng. 2016 Jul;36:99-115. doi: 10.1016/j.ymben.2016.03.006. Epub 2016 Mar 23. Review.

29.

Alternative reactions at the interface of glycolysis and citric acid cycle in Saccharomyces cerevisiae.

van Rossum HM, Kozak BU, Niemeijer MS, Duine HJ, Luttik MA, Boer VM, Kötter P, Daran JM, van Maris AJ, Pronk JT.

FEMS Yeast Res. 2016 May;16(3). pii: fow017. doi: 10.1093/femsyr/fow017. Epub 2016 Feb 18.

30.

Replacement of the initial steps of ethanol metabolism in Saccharomyces cerevisiae by ATP-independent acetylating acetaldehyde dehydrogenase.

Kozak BU, van Rossum HM, Niemeijer MS, van Dijk M, Benjamin K, Wu L, Daran JM, Pronk JT, van Maris AJ.

FEMS Yeast Res. 2016 Mar;16(2):fow006. doi: 10.1093/femsyr/fow006. Epub 2016 Jan 26.

31.

Excessive by-product formation: A key contributor to low isobutanol yields of engineered Saccharomyces cerevisiae strains.

Milne N, Wahl SA, van Maris AJA, Pronk JT, Daran JM.

Metab Eng Commun. 2016 Jan 20;3:39-51. doi: 10.1016/j.meteno.2016.01.002. eCollection 2016 Dec.

32.

Comparative assessment of native and heterologous 2-oxo acid decarboxylases for application in isobutanol production by Saccharomyces cerevisiae.

Milne N, van Maris AJ, Pronk JT, Daran JM.

Biotechnol Biofuels. 2015 Dec 1;8:204. doi: 10.1186/s13068-015-0374-0. eCollection 2015.

33.

Thermodynamics-based design of microbial cell factories for anaerobic product formation.

Cueto-Rojas HF, van Maris AJ, Wahl SA, Heijnen JJ.

Trends Biotechnol. 2015 Sep;33(9):534-46. doi: 10.1016/j.tibtech.2015.06.010. Epub 2015 Jul 28. Review.

PMID:
26232033
34.

Functional expression of a heterologous nickel-dependent, ATP-independent urease in Saccharomyces cerevisiae.

Milne N, Luttik MAH, Cueto Rojas HF, Wahl A, van Maris AJA, Pronk JT, Daran JM.

Metab Eng. 2015 Jul;30:130-140. doi: 10.1016/j.ymben.2015.05.003. Epub 2015 May 30.

35.

CRISPR/Cas9: a molecular Swiss army knife for simultaneous introduction of multiple genetic modifications in Saccharomyces cerevisiae.

Mans R, van Rossum HM, Wijsman M, Backx A, Kuijpers NG, van den Broek M, Daran-Lapujade P, Pronk JT, van Maris AJ, Daran JM.

FEMS Yeast Res. 2015 Mar;15(2). pii: fov004. doi: 10.1093/femsyr/fov004. Epub 2015 Mar 4.

36.

Improving conversion yield of fermentable sugars into fuel ethanol in 1st generation yeast-based production processes.

Gombert AK, van Maris AJ.

Curr Opin Biotechnol. 2015 Jun;33:81-6. doi: 10.1016/j.copbio.2014.12.012. Epub 2015 Jan 7. Review.

PMID:
25576737
37.

Physiological and cell morphology adaptation of Bacillus subtilis at near-zero specific growth rates: a transcriptome analysis.

Overkamp W, Ercan O, Herber M, van Maris AJ, Kleerebezem M, Kuipers OP.

Environ Microbiol. 2015 Feb;17(2):346-63. doi: 10.1111/1462-2920.12676. Epub 2014 Dec 17.

PMID:
25367190
38.

Engineering acetyl coenzyme A supply: functional expression of a bacterial pyruvate dehydrogenase complex in the cytosol of Saccharomyces cerevisiae.

Kozak BU, van Rossum HM, Luttik MA, Akeroyd M, Benjamin KR, Wu L, de Vries S, Daran JM, Pronk JT, van Maris AJ.

MBio. 2014 Oct 21;5(5):e01696-14. doi: 10.1128/mBio.01696-14.

39.

Physiology of the fuel ethanol strain Saccharomyces cerevisiae PE-2 at low pH indicates a context-dependent performance relevant for industrial applications.

Della-Bianca BE, de Hulster E, Pronk JT, van Maris AJ, Gombert AK.

FEMS Yeast Res. 2014 Dec;14(8):1196-205. doi: 10.1111/1567-1364.12217. Epub 2014 Oct 31.

40.

The fraction of cells that resume growth after acetic acid addition is a strain-dependent parameter of acetic acid tolerance in Saccharomyces cerevisiae.

Swinnen S, Fernández-Niño M, González-Ramos D, van Maris AJ, Nevoigt E.

FEMS Yeast Res. 2014 Jun;14(4):642-53. doi: 10.1111/1567-1364.12151. Epub 2014 Apr 11.

41.

Polycistronic expression of a β-carotene biosynthetic pathway in Saccharomyces cerevisiae coupled to β-ionone production.

Beekwilder J, van Rossum HM, Koopman F, Sonntag F, Buchhaupt M, Schrader J, Hall RD, Bosch D, Pronk JT, van Maris AJ, Daran JM.

J Biotechnol. 2014 Dec 20;192 Pt B:383-92. doi: 10.1016/j.jbiotec.2013.12.016. Epub 2014 Jan 28.

PMID:
24486029
42.

Replacement of the Saccharomyces cerevisiae acetyl-CoA synthetases by alternative pathways for cytosolic acetyl-CoA synthesis.

Kozak BU, van Rossum HM, Benjamin KR, Wu L, Daran JM, Pronk JT, van Maris AJ.

Metab Eng. 2014 Jan;21:46-59. doi: 10.1016/j.ymben.2013.11.005. Epub 2013 Nov 19.

43.

Genome duplication and mutations in ACE2 cause multicellular, fast-sedimenting phenotypes in evolved Saccharomyces cerevisiae.

Oud B, Guadalupe-Medina V, Nijkamp JF, de Ridder D, Pronk JT, van Maris AJ, Daran JM.

Proc Natl Acad Sci U S A. 2013 Nov 5;110(45):E4223-31. doi: 10.1073/pnas.1305949110. Epub 2013 Oct 21.

44.

Evolutionary engineering of a glycerol-3-phosphate dehydrogenase-negative, acetate-reducing Saccharomyces cerevisiae strain enables anaerobic growth at high glucose concentrations.

Guadalupe-Medina V, Metz B, Oud B, van Der Graaf CM, Mans R, Pronk JT, van Maris AJ.

Microb Biotechnol. 2014 Jan;7(1):44-53. doi: 10.1111/1751-7915.12080. Epub 2013 Sep 4.

45.

Carbon dioxide fixation by Calvin-Cycle enzymes improves ethanol yield in yeast.

Guadalupe-Medina V, Wisselink HW, Luttik MA, de Hulster E, Daran JM, Pronk JT, van Maris AJ.

Biotechnol Biofuels. 2013 Aug 29;6(1):125. doi: 10.1186/1754-6834-6-125.

46.

Genome-scale analyses of butanol tolerance in Saccharomyces cerevisiae reveal an essential role of protein degradation.

González-Ramos D, van den Broek M, van Maris AJ, Pronk JT, Daran JM.

Biotechnol Biofuels. 2013 Apr 3;6(1):48. doi: 10.1186/1754-6834-6-48.

47.

De novo production of the flavonoid naringenin in engineered Saccharomyces cerevisiae.

Koopman F, Beekwilder J, Crimi B, van Houwelingen A, Hall RD, Bosch D, van Maris AJ, Pronk JT, Daran JM.

Microb Cell Fact. 2012 Dec 8;11:155. doi: 10.1186/1475-2859-11-155.

48.

Toward pectin fermentation by Saccharomyces cerevisiae: expression of the first two steps of a bacterial pathway for D-galacturonate metabolism.

Huisjes EH, Luttik MA, Almering MJ, Bisschops MM, Dang DH, Kleerebezem M, Siezen R, van Maris AJ, Pronk JT.

J Biotechnol. 2012 Dec 31;162(2-3):303-10. doi: 10.1016/j.jbiotec.2012.10.003. Epub 2012 Oct 16.

PMID:
23079077
49.

An internal deletion in MTH1 enables growth on glucose of pyruvate-decarboxylase negative, non-fermentative Saccharomyces cerevisiae.

Oud B, Flores CL, Gancedo C, Zhang X, Trueheart J, Daran JM, Pronk JT, van Maris AJ.

Microb Cell Fact. 2012 Sep 15;11:131. doi: 10.1186/1475-2859-11-131.

50.

Galacturonic acid inhibits the growth of Saccharomyces cerevisiae on galactose, xylose, and arabinose.

Huisjes EH, de Hulster E, van Dam JC, Pronk JT, van Maris AJ.

Appl Environ Microbiol. 2012 Aug;78(15):5052-9. doi: 10.1128/AEM.07617-11. Epub 2012 May 11.

Supplemental Content

Loading ...
Support Center