Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 22

1.

A genome-wide transcriptional study reveals that iron deficiency inhibits the yeast TORC1 pathway.

Romero AM, Ramos-Alonso L, Montellá-Manuel S, García-Martínez J, de la Torre-Ruiz MÁ, Pérez-Ortín JE, Martínez-Pastor MT, Puig S.

Biochim Biophys Acta Gene Regul Mech. 2019 Sep;1862(9):194414. doi: 10.1016/j.bbagrm.2019.194414. Epub 2019 Aug 5.

PMID:
31394264
2.

Tor1, Sch9 and PKA downregulation in quiescence rely on Mtl1 to preserve mitochondrial integrity and cell survival.

Sundaram V, Petkova MI, Pujol-Carrion N, Boada J, de la Torre-Ruiz MA.

Mol Microbiol. 2015 Jul;97(1):93-109. doi: 10.1111/mmi.13013. Epub 2015 May 15.

3.

Unraveling oxidative stress. From yeast to human therapy.

De La Torre Ruiz MÁ.

Curr Drug Targets. 2015;16(1):1. No abstract available.

PMID:
25601420
4.

Coping with oxidative stress. The yeast model.

de la Torre-Ruiz MA, Pujol N, Sundaran V.

Curr Drug Targets. 2015;16(1):2-12. Review.

PMID:
25330032
5.

The MAP kinase Slt2 is involved in vacuolar function and actin remodeling in Saccharomyces cerevisiae mutants affected by endogenous oxidative stress.

Pujol-Carrion N, Petkova MI, Serrano L, de la Torre-Ruiz MA.

Appl Environ Microbiol. 2013 Oct;79(20):6459-71. doi: 10.1128/AEM.01692-13. Epub 2013 Aug 16.

6.

Mtl1 O-mannosylation mediated by both Pmt1 and Pmt2 is important for cell survival under oxidative conditions and TOR blockade.

Petkova MI, Pujol-Carrion N, de la Torre-Ruiz MA.

Fungal Genet Biol. 2012 Nov;49(11):903-14. doi: 10.1016/j.fgb.2012.08.005. Epub 2012 Sep 7.

PMID:
22960125
7.

Low temperature highlights the functional role of the cell wall integrity pathway in the regulation of growth in Saccharomyces cerevisiae.

Córcoles-Sáez I, Ballester-Tomas L, de la Torre-Ruiz MA, Prieto JA, Randez-Gil F.

Biochem J. 2012 Sep 15;446(3):477-88. doi: 10.1042/BJ20120634.

PMID:
22747505
8.

Pkc1 and actin polymerisation activities play a role in ribosomal gene repression associated with secretion impairment caused by oxidative stress.

Mitjana FV, Petkova MI, Pujol-Carrion N, de la Torre-Ruiz MA.

FEMS Yeast Res. 2011 Dec;11(8):656-9. doi: 10.1111/j.1567-1364.2011.00754.x. Epub 2011 Sep 27.

9.

Signal flow between CWI/TOR and CWI/RAS in budding yeast under conditions of oxidative stress and glucose starvation.

Petkova MI, Pujol-Carrion N, de la Torre-Ruiz MA.

Commun Integr Biol. 2010 Nov;3(6):555-7. doi: 10.4161/cib.3.6.12974. Epub 2010 Nov 1.

10.

How budding yeast sense and transduce the oxidative stress signal and the impact in cell growth and morphogenesis.

de la Torre-Ruiz MA, Mozo-Villarías A, Pujol N, Petkova MI.

Curr Protein Pept Sci. 2010 Dec;11(8):669-79. Review.

PMID:
21235503
11.

Fungal model system to understand the mechanisms unravelling the oxidative stress response.

de la Torre-Ruiz MA.

Curr Protein Pept Sci. 2010 Dec;11(8):651. No abstract available.

PMID:
21235500
12.

[No title available]

de la Torre-Ruiz MA.

Curr Protein Pept Sci. 2010 Dec 29. [Epub ahead of print] No abstract available.

PMID:
21190520
13.

Glutaredoxins Grx4 and Grx3 of Saccharomyces cerevisiae play a role in actin dynamics through their Trx domains, which contributes to oxidative stress resistance.

Pujol-Carrion N, de la Torre-Ruiz MA.

Appl Environ Microbiol. 2010 Dec;76(23):7826-35. doi: 10.1128/AEM.01755-10. Epub 2010 Oct 1.

14.

Two proteins from Saccharomyces cerevisiae: Pfy1 and Pkc1, play a dual role in activating actin polymerization and in increasing cell viability in the adaptive response to oxidative stress.

Pujol N, Bonet C, Vilella F, Petkova MI, Mozo-Villarías A, de la Torre-Ruiz MA.

FEMS Yeast Res. 2009 Dec;9(8):1196-207. doi: 10.1111/j.1567-1364.2009.00565.x. Epub 2009 Aug 12.

15.

Monothiol glutaredoxins: a common domain for multiple functions.

Herrero E, de la Torre-Ruiz MA.

Cell Mol Life Sci. 2007 Jun;64(12):1518-30. Review.

PMID:
17415523
16.

Glutaredoxins Grx3 and Grx4 regulate nuclear localisation of Aft1 and the oxidative stress response in Saccharomyces cerevisiae.

Pujol-Carrion N, Belli G, Herrero E, Nogues A, de la Torre-Ruiz MA.

J Cell Sci. 2006 Nov 1;119(Pt 21):4554-64.

17.

Pkc1 and the upstream elements of the cell integrity pathway in Saccharomyces cerevisiae, Rom2 and Mtl1, are required for cellular responses to oxidative stress.

Vilella F, Herrero E, Torres J, de la Torre-Ruiz MA.

J Biol Chem. 2005 Mar 11;280(10):9149-59. Epub 2005 Jan 6.

18.

Regulation of the cell integrity pathway by rapamycin-sensitive TOR function in budding yeast.

Torres J, Di Como CJ, Herrero E, De La Torre-Ruiz MA.

J Biol Chem. 2002 Nov 8;277(45):43495-504. Epub 2002 Aug 8.

19.

Topoisomerase III acts upstream of Rad53p in the S-phase DNA damage checkpoint.

Chakraverty RK, Kearsey JM, Oakley TJ, Grenon M, de La Torre Ruiz MA, Lowndes NF, Hickson ID.

Mol Cell Biol. 2001 Nov;21(21):7150-62.

20.

DUN1 defines one branch downstream of RAD53 for transcription and DNA damage repair in Saccharomyces cerevisiae.

de la Torre Ruiz MA, Lowndes NF.

FEBS Lett. 2000 Nov 24;485(2-3):205-6. No abstract available.

22.

A novel role for the budding yeast RAD9 checkpoint gene in DNA damage-dependent transcription.

Aboussekhra A, Vialard JE, Morrison DE, de la Torre-Ruiz MA, Cernáková L, Fabre F, Lowndes NF.

EMBO J. 1996 Aug 1;15(15):3912-22.

Supplemental Content

Loading ...
Support Center