Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 195

1.

A recombinant Chlamydia trachomatis MOMP vaccine elicits cross-serogroup protection in mice against vaginal shedding and infertility.

Tifrea DF, Pal S, de la Maza LM.

J Infect Dis. 2019 Aug 28. pii: jiz438. doi: 10.1093/infdis/jiz438. [Epub ahead of print]

PMID:
31504647
2.

Characterization of the Horizontal and Vertical Sexual Transmission of Chlamydia Genital Infections in a New Mouse Model.

Pal S, Tifrea DF, de la Maza LM.

Infect Immun. 2019 Jun 20;87(7). pii: e00834-18. doi: 10.1128/IAI.00834-18. Print 2019 Jul.

PMID:
30833332
3.

Co-delivery of amphipol-conjugated adjuvant with antigen, and adjuvant combinations, enhance immune protection elicited by a membrane protein-based vaccine against a mucosal challenge with Chlamydia.

Tifrea DF, Pal S, Le Bon C, Giusti F, Popot JL, Cocco MJ, Zoonens M, de la Maza LM.

Vaccine. 2018 Oct 29;36(45):6640-6649. doi: 10.1016/j.vaccine.2018.09.055. Epub 2018 Oct 4.

PMID:
30293763
4.

National Institute of Allergy and Infectious Diseases workshop report: "Chlamydia vaccines: The way forward".

Zhong G, Brunham RC, de la Maza LM, Darville T, Deal C.

Vaccine. 2017 Oct 31. pii: S0264-410X(17)31483-4. doi: 10.1016/j.vaccine.2017.10.075. [Epub ahead of print]

PMID:
29097007
5.

Transcervical Inoculation with Chlamydia trachomatis Induces Infertility in HLA-DR4 Transgenic and Wild-Type Mice.

Pal S, Tifrea DF, Zhong G, de la Maza LM.

Infect Immun. 2017 Dec 19;86(1). pii: e00722-17. doi: 10.1128/IAI.00722-17. Print 2018 Jan.

6.

Genome-wide profiling of humoral immunity and pathogen genes under selection identifies immune evasion tactics of Chlamydia trachomatis during ocular infection.

Pickering H, Teng A, Faal N, Joof H, Makalo P, Cassama E, Nabicassa M, Last AR, Burr SE, Rowland-Jones SL, Thomson NR, Roberts CH, Mabey DCW, Bailey RL, Hayward RD, de la Maza LM, Holland MJ.

Sci Rep. 2017 Aug 29;7(1):9634. doi: 10.1038/s41598-017-09193-2.

7.

Comparison of the nine polymorphic membrane proteins of Chlamydia trachomatis for their ability to induce protective immune responses in mice against a C. muridarum challenge.

Pal S, Favaroni A, Tifrea DF, Hanisch PT, Luczak SET, Hegemann JH, de la Maza LM.

Vaccine. 2017 May 2;35(19):2543-2549. doi: 10.1016/j.vaccine.2017.03.070. Epub 2017 Apr 3.

8.

The cationic liposomal adjuvants CAF01 and CAF09 formulated with the major outer membrane protein elicit robust protection in mice against a Chlamydia muridarum respiratory challenge.

Pal S, Tifrea DF, Follmann F, Andersen P, de la Maza LM.

Vaccine. 2017 Mar 23;35(13):1705-1711. doi: 10.1016/j.vaccine.2017.02.020. Epub 2017 Feb 24.

PMID:
28238632
9.

Update on Chlamydia trachomatis Vaccinology.

de la Maza LM, Zhong G, Brunham RC.

Clin Vaccine Immunol. 2017 Apr 5;24(4). pii: e00543-16. doi: 10.1128/CVI.00543-16. Print 2017 Apr. Review.

10.

Phosphate substitution in an AlOOH - TLR4 adjuvant system (SPA08) modulates the immunogenicity of Serovar E MOMP from Chlamydia trachomatis.

Visan L, Sanchez V, Kania M, de Montfort A, de la Maza LM, Ausar SF.

Hum Vaccin Immunother. 2016 Sep;12(9):2341-50. doi: 10.1080/21645515.2016.1168958. Epub 2016 Apr 22.

11.

Computational modeling of TC0583 as a putative component of the Chlamydia muridarum V-type ATP synthase complex and assessment of its protective capabilities as a vaccine antigen.

Tifrea DF, Barta ML, Pal S, Hefty PS, de la Maza LM.

Microbes Infect. 2016 Apr;18(4):245-53. doi: 10.1016/j.micinf.2015.12.002. Epub 2015 Dec 17.

PMID:
26706820
12.
13.

Long-term stability of a vaccine formulated with the amphipol-trapped major outer membrane protein from Chlamydia trachomatis.

Feinstein HE, Tifrea D, Sun G, Popot JL, de la Maza LM, Cocco MJ.

J Membr Biol. 2014 Oct;247(9-10):1053-65. doi: 10.1007/s00232-014-9693-5. Epub 2014 Jun 19.

14.

Whole genome identification of C. trachomatis immunodominant antigens after genital tract infections and effect of antibiotic treatment of pigtailed macaques.

Patton DL, Teng A, Randall A, Liang X, Felgner PL, de la Maza LM.

J Proteomics. 2014 Aug 28;108:99-109. doi: 10.1016/j.jprot.2014.05.009. Epub 2014 May 24.

15.

Increased immunoaccessibility of MOMP epitopes in a vaccine formulated with amphipols may account for the very robust protection elicited against a vaginal challenge with Chlamydia muridarum.

Tifrea DF, Pal S, Popot JL, Cocco MJ, de la Maza LM.

J Immunol. 2014 Jun 1;192(11):5201-13. doi: 10.4049/jimmunol.1303392. Epub 2014 Apr 28.

16.

TRAIL-R1 is a negative regulator of pro-inflammatory responses and modulates long-term sequelae resulting from Chlamydia trachomatis infections in humans.

Al-Kuhlani M, Rothschild J, Pal S, de la Maza LM, Ouburg S, Morré SA, Dean D, Ojcius DM.

PLoS One. 2014 Apr 2;9(4):e93939. doi: 10.1371/journal.pone.0093939. eCollection 2014. Erratum in: PLoS One. 2014;9(8):e106964. Rothchild, James [corrected to Rothschild, James].

17.
18.

Assessment of the role in protection and pathogenesis of the Chlamydia muridarum V-type ATP synthase subunit A (AtpA) (TC0582).

Cheng C, Jain P, Pal S, Tifrea D, Sun G, Teng AA, Liang X, Felgner PL, de la Maza LM.

Microbes Infect. 2014 Feb;16(2):123-133. doi: 10.1016/j.micinf.2013.10.012. Epub 2013 Oct 23.

19.

Vaccination with major outer membrane protein proteosomes elicits protection in mice against a Chlamydia respiratory challenge.

Tifrea DF, Pal S, Toussi DN, Massari P, de la Maza LM.

Microbes Infect. 2013 Nov;15(13):920-7. doi: 10.1016/j.micinf.2013.08.005. Epub 2013 Aug 30.

20.

A 3-dimensional trimeric β-barrel model for Chlamydia MOMP contains conserved and novel elements of Gram-negative bacterial porins.

Feher VA, Randall A, Baldi P, Bush RM, de la Maza LM, Amaro RE.

PLoS One. 2013 Jul 25;8(7):e68934. doi: 10.1371/journal.pone.0068934. Print 2013.

21.

Mechanism of T-cell mediated protection in newborn mice against a Chlamydia infection.

Pal S, de la Maza LM.

Microbes Infect. 2013 Jul-Aug;15(8-9):607-14. doi: 10.1016/j.micinf.2013.04.010. Epub 2013 May 2.

22.
23.

Differences in infectivity and induction of infertility: a comparative study of Chlamydia trachomatis strains in the murine model.

Carmichael JR, Tifrea D, Pal S, de la Maza LM.

Microbes Infect. 2013 Mar;15(3):219-29. doi: 10.1016/j.micinf.2012.12.001. Epub 2012 Dec 31.

24.

Toll-like receptor 2-dependent activity of native major outer membrane protein proteosomes of Chlamydia trachomatis.

Massari P, Toussi DN, Tifrea DF, de la Maza LM.

Infect Immun. 2013 Jan;81(1):303-10. doi: 10.1128/IAI.01062-12. Epub 2012 Nov 6.

25.

Proteomic identification of immunodominant chlamydial antigens in a mouse model.

Teng A, Cruz-Fisher MI, Cheng C, Pal S, Sun G, Ralli-Jain P, Molina DM, Felgner PL, Liang X, de la Maza LM.

J Proteomics. 2012 Dec 21;77:176-86. doi: 10.1016/j.jprot.2012.08.017. Epub 2012 Aug 31.

26.

A TLR2 agonist is a more effective adjuvant for a Chlamydia major outer membrane protein vaccine than ligands to other TLR and NOD receptors.

Cheng C, Jain P, Bettahi I, Pal S, Tifrea D, de la Maza LM.

Vaccine. 2011 Sep 2;29(38):6641-9. doi: 10.1016/j.vaccine.2011.06.105. Epub 2011 Jul 8.

27.

Induction of protection against vaginal shedding and infertility by a recombinant Chlamydia vaccine.

Carmichael JR, Pal S, Tifrea D, de la Maza LM.

Vaccine. 2011 Jul 18;29(32):5276-83. doi: 10.1016/j.vaccine.2011.05.013. Epub 2011 May 24.

28.

Amphipols stabilize the Chlamydia major outer membrane protein and enhance its protective ability as a vaccine.

Tifrea DF, Sun G, Pal S, Zardeneta G, Cocco MJ, Popot JL, de la Maza LM.

Vaccine. 2011 Jun 20;29(28):4623-31. doi: 10.1016/j.vaccine.2011.04.065. Epub 2011 May 6.

29.

Amphipols from A to Z.

Popot JL, Althoff T, Bagnard D, Banères JL, Bazzacco P, Billon-Denis E, Catoire LJ, Champeil P, Charvolin D, Cocco MJ, Crémel G, Dahmane T, de la Maza LM, Ebel C, Gabel F, Giusti F, Gohon Y, Goormaghtigh E, Guittet E, Kleinschmidt JH, Kühlbrandt W, Le Bon C, Martinez KL, Picard M, Pucci B, Sachs JN, Tribet C, van Heijenoort C, Wien F, Zito F, Zoonens M.

Annu Rev Biophys. 2011;40:379-408. doi: 10.1146/annurev-biophys-042910-155219.

PMID:
21545287
30.

Immunogenicity of a vaccine formulated with the Chlamydia trachomatis serovar F, native major outer membrane protein in a nonhuman primate model.

Cheng C, Pal S, Bettahi I, Oxford KL, Barry PA, de la Maza LM.

Vaccine. 2011 Apr 18;29(18):3456-64. doi: 10.1016/j.vaccine.2011.02.057. Epub 2011 Mar 4.

31.

Induction of protection in mice against a respiratory challenge by a vaccine formulated with the Chlamydia major outer membrane protein adjuvanted with IC31®.

Cheng C, Cruz-Fisher MI, Tifrea D, Pal S, Wizel B, de la Maza LM.

Vaccine. 2011 Mar 16;29(13):2437-43. doi: 10.1016/j.vaccine.2011.01.031. Epub 2011 Jan 26.

PMID:
21276442
32.

Identification of immunodominant antigens by probing a whole Chlamydia trachomatis open reading frame proteome microarray using sera from immunized mice.

Cruz-Fisher MI, Cheng C, Sun G, Pal S, Teng A, Molina DM, Kayala MA, Vigil A, Baldi P, Felgner PL, Liang X, de la Maza LM.

Infect Immun. 2011 Jan;79(1):246-57. doi: 10.1128/IAI.00626-10. Epub 2010 Oct 18.

33.

A new murine model for testing vaccines against genital Chlamydia trachomatis infections in males.

Pal S, Sarcon AK, de la Maza LM.

Vaccine. 2010 Nov 10;28(48):7606-12. doi: 10.1016/j.vaccine.2010.09.060. Epub 2010 Oct 13.

34.

Enhancement of the protective efficacy of a Chlamydia trachomatis recombinant vaccine by combining systemic and mucosal routes for immunization.

Ralli-Jain P, Tifrea D, Cheng C, Pal S, de la Maza LM.

Vaccine. 2010 Nov 10;28(48):7659-66. doi: 10.1016/j.vaccine.2010.09.040. Epub 2010 Sep 25.

35.

Candidate vaginal microbicides with activity against Chlamydia trachomatis and Neisseriagonorrhoeae.

Chu H, Slepenkin A, Elofsson M, Keyser P, de la Maza LM, Peterson EM.

Int J Antimicrob Agents. 2010 Aug;36(2):145-50. doi: 10.1016/j.ijantimicag.2010.03.018. Epub 2010 Jun 1.

36.

Maternal immunity partially protects newborn mice against a Chlamydia trachomatis intranasal challenge.

Pal S, Tatarenkova O, de la Maza LM.

J Reprod Immunol. 2010 Nov;86(2):151-7. doi: 10.1016/j.jri.2010.04.003. Epub 2010 Jun 15.

37.

Identification of immunodominant antigens of Chlamydia trachomatis using proteome microarrays.

Molina DM, Pal S, Kayala MA, Teng A, Kim PJ, Baldi P, Felgner PL, Liang X, de la Maza LM.

Vaccine. 2010 Apr 9;28(17):3014-24. doi: 10.1016/j.vaccine.2009.12.020. Epub 2009 Dec 29.

38.

C3H male mice with severe combined immunodeficiency cannot clear a urethral infection with a human serovar of Chlamydia trachomatis.

Pal S, Sarcon AK, de la Maza LM.

Infect Immun. 2009 Dec;77(12):5602-7. doi: 10.1128/IAI.00766-09. Epub 2009 Oct 5.

39.

Induction of protective immunity by vaccination against Chlamydia trachomatis using the major outer membrane protein adjuvanted with CpG oligodeoxynucleotide coupled to the nontoxic B subunit of cholera toxin.

Cheng C, Bettahi I, Cruz-Fisher MI, Pal S, Jain P, Jia Z, Holmgren J, Harandi AM, de la Maza LM.

Vaccine. 2009 Oct 19;27(44):6239-46. doi: 10.1016/j.vaccine.2009.07.108. Epub 2009 Aug 15.

40.

Biophysical and stabilization studies of the Chlamydia trachomatis mouse pneumonitis major outer membrane protein.

Cai S, He F, Samra HS, de la Maza LM, Bottazzi ME, Joshi SB, Middaugh CR.

Mol Pharm. 2009 Sep-Oct;6(5):1553-61. doi: 10.1021/mp900110q.

41.

Chlamydia trachomatis native major outer membrane protein induces partial protection in nonhuman primates: implication for a trachoma transmission-blocking vaccine.

Kari L, Whitmire WM, Crane DD, Reveneau N, Carlson JH, Goheen MM, Peterson EM, Pal S, de la Maza LM, Caldwell HD.

J Immunol. 2009 Jun 15;182(12):8063-70. doi: 10.4049/jimmunol.0804375.

42.

Protection against an intranasal challenge by vaccines formulated with native and recombinant preparations of the Chlamydia trachomatis major outer membrane protein.

Sun G, Pal S, Weiland J, Peterson EM, de la Maza LM.

Vaccine. 2009 Aug 6;27(36):5020-5. doi: 10.1016/j.vaccine.2009.05.008. Epub 2009 May 27.

43.

Imaging of effector memory T cells during a delayed-type hypersensitivity reaction and suppression by Kv1.3 channel block.

Matheu MP, Beeton C, Garcia A, Chi V, Rangaraju S, Safrina O, Monaghan K, Uemura MI, Li D, Pal S, de la Maza LM, Monuki E, Flügel A, Pennington MW, Parker I, Chandy KG, Cahalan MD.

Immunity. 2008 Oct 17;29(4):602-14. doi: 10.1016/j.immuni.2008.07.015. Epub 2008 Oct 2.

45.

Structural and functional analyses of the major outer membrane protein of Chlamydia trachomatis.

Sun G, Pal S, Sarcon AK, Kim S, Sugawara E, Nikaido H, Cocco MJ, Peterson EM, de la Maza LM.

J Bacteriol. 2007 Sep;189(17):6222-35. Epub 2007 Jun 29.

46.

Reversal of the antichlamydial activity of putative type III secretion inhibitors by iron.

Slepenkin A, Enquist PA, Hägglund U, de la Maza LM, Elofsson M, Peterson EM.

Infect Immun. 2007 Jul;75(7):3478-89. Epub 2007 Apr 30.

47.

Role of matrix metalloproteinase-7 in the modulation of a Chlamydia trachomatis infection.

Pal S, Schmidt AP, Peterson EM, Wilson CL, de la Maza LM.

Immunology. 2006 Feb;117(2):213-9.

49.
50.

Vaccination of newborn mice induces a strong protective immune response against respiratory and genital challenges with Chlamydia trachomatis.

Pal S, Peterson EM, de la Maza LM.

Vaccine. 2005 Nov 16;23(46-47):5351-8. Epub 2005 Jul 19.

PMID:
16085340

Supplemental Content

Loading ...
Support Center