Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 67

1.

CRISPR/Cas inactivation of RECQ4 increases homeologous crossovers in an interspecific tomato hybrid.

de Maagd RA, Loonen A, Chouaref J, Pelé A, Meijer-Dekens F, Fransz P, Bai Y.

Plant Biotechnol J. 2019 Sep 4. doi: 10.1111/pbi.13248. [Epub ahead of print]

2.

Re-evaluation of transcription factor function in tomato fruit development and ripening with CRISPR/Cas9-mutagenesis.

Wang R, Tavano ECDR, Lammers M, Martinelli AP, Angenent GC, de Maagd RA.

Sci Rep. 2019 Feb 8;9(1):1696. doi: 10.1038/s41598-018-38170-6.

3.

Identification of Loci Affecting Accumulation of Secondary Metabolites in Tomato Fruit of a Solanum lycopersicum × Solanum chmielewskii Introgression Line Population.

Ballester AR, Tikunov Y, Molthoff J, Grandillo S, Viquez-Zamora M, de Vos R, de Maagd RA, van Heusden S, Bovy AG.

Front Plant Sci. 2016 Sep 28;7:1428. eCollection 2016.

4.

Relevance of Bt toxin interaction studies for environmental risk assessment of genetically modified crops.

De Schrijver A, De Clercq P, de Maagd RA, van Frankenhuyzen K.

Plant Biotechnol J. 2015 Dec;13(9):1221-3. doi: 10.1111/pbi.12406. Epub 2015 Jun 1.

5.

The cell size distribution of tomato fruit can be changed by overexpression of CDKA1.

Czerednik A, Busscher M, Angenent GC, de Maagd RA.

Plant Biotechnol J. 2015 Feb;13(2):259-68. doi: 10.1111/pbi.12268. Epub 2014 Oct 4.

6.

Fruit illumination stimulates cell division but has no detectable effect on fruit size in tomato (Solanum lycopersicum).

Okello RC, Heuvelink E, de Visser PH, Lammers M, de Maagd RA, Marcelis LF, Struik PC.

Physiol Plant. 2015 May;154(1):114-27. doi: 10.1111/ppl.12283. Epub 2014 Oct 29.

PMID:
25220433
7.

Transcriptional control of fleshy fruit development and ripening.

Karlova R, Chapman N, David K, Angenent GC, Seymour GB, de Maagd RA.

J Exp Bot. 2014 Aug;65(16):4527-41. doi: 10.1093/jxb/eru316. Review.

PMID:
25080453
8.

A multilevel analysis of fruit growth of two tomato cultivars in response to fruit temperature.

Okello RC, de Visser PH, Heuvelink E, Lammers M, de Maagd RA, Struik PC, Marcelis LF.

Physiol Plant. 2015 Mar;153(3):403-18. doi: 10.1111/ppl.12247. Epub 2014 Aug 5.

PMID:
24957883
9.

Plant metabolomics is not ripe for environmental risk assessment.

Hall RD, de Maagd RA.

Trends Biotechnol. 2014 Aug;32(8):391-2. doi: 10.1016/j.tibtech.2014.05.002. Epub 2014 Jun 4.

PMID:
24908381
10.

Identification, cloning and characterization of the tomato TCP transcription factor family.

Parapunova V, Busscher M, Busscher-Lange J, Lammers M, Karlova R, Bovy AG, Angenent GC, de Maagd RA.

BMC Plant Biol. 2014 Jun 6;14:157. doi: 10.1186/1471-2229-14-157.

11.

A novel Cry9Aa with increased toxicity for Spodoptera exigua (Hübner).

Naimov S, Nedyalkova R, Staykov N, Weemen-Hendriks M, Minkov I, de Maagd RA.

J Invertebr Pathol. 2014 Jan;115:99-101. doi: 10.1016/j.jip.2013.11.003. Epub 2013 Nov 25.

PMID:
24286660
12.

FLOWERING LOCUS C in monocots and the tandem origin of angiosperm-specific MADS-box genes.

Ruelens P, de Maagd RA, Proost S, Theißen G, Geuten K, Kaufmann K.

Nat Commun. 2013;4:2280. doi: 10.1038/ncomms3280.

PMID:
23955420
13.

Identification of microRNA targets in tomato fruit development using high-throughput sequencing and degradome analysis.

Karlova R, van Haarst JC, Maliepaard C, van de Geest H, Bovy AG, Lammers M, Angenent GC, de Maagd RA.

J Exp Bot. 2013 Apr;64(7):1863-78. doi: 10.1093/jxb/ert049. Epub 2013 Mar 13.

14.

The tomato FRUITFULL homologs TDR4/FUL1 and MBP7/FUL2 regulate ethylene-independent aspects of fruit ripening.

Bemer M, Karlova R, Ballester AR, Tikunov YM, Bovy AG, Wolters-Arts M, Rossetto Pde B, Angenent GC, de Maagd RA.

Plant Cell. 2012 Nov;24(11):4437-51. doi: 10.1105/tpc.112.103283. Epub 2012 Nov 6.

15.

The tomato CAROTENOID CLEAVAGE DIOXYGENASE8 (SlCCD8) regulates rhizosphere signaling, plant architecture and affects reproductive development through strigolactone biosynthesis.

Kohlen W, Charnikhova T, Lammers M, Pollina T, Tóth P, Haider I, Pozo MJ, de Maagd RA, Ruyter-Spira C, Bouwmeester HJ, López-Ráez JA.

New Phytol. 2012 Oct;196(2):535-547. doi: 10.1111/j.1469-8137.2012.04265.x. Epub 2012 Aug 24.

16.

Functional interactions between members of the REPAT family of insect pathogen-induced proteins.

Navarro-Cerrillo G, Ferré J, de Maagd RA, Herrero S.

Insect Mol Biol. 2012 Jun;21(3):335-42. doi: 10.1111/j.1365-2583.2012.01139.x. Epub 2012 Mar 9.

PMID:
22404489
17.

Regulation of tomato fruit pericarp development by an interplay between CDKB and CDKA1 cell cycle genes.

Czerednik A, Busscher M, Bielen BA, Wolters-Arts M, de Maagd RA, Angenent GC.

J Exp Bot. 2012 Apr;63(7):2605-17. doi: 10.1093/jxb/err451. Epub 2012 Jan 25.

18.

Carboxy-terminal extension effects on crystal formation and insecticidal properties of Cry15Aa.

Naimov S, Valkova R, Dukiandjiev S, Minkov I, de Maagd RA.

J Invertebr Pathol. 2011 Sep;108(1):56-8. doi: 10.1016/j.jip.2011.05.019. Epub 2011 Jun 24.

PMID:
21723871
19.

Dominant negative phenotype of Bacillus thuringiensis Cry1Ab, Cry11Aa and Cry4Ba mutants suggest hetero-oligomer formation among different Cry toxins.

Carmona D, Rodríguez-Almazán C, Muñoz-Garay C, Portugal L, Pérez C, de Maagd RA, Bakker P, Soberón M, Bravo A.

PLoS One. 2011;6(5):e19952. doi: 10.1371/journal.pone.0019952. Epub 2011 May 16.

20.

Transcriptome and metabolite profiling show that APETALA2a is a major regulator of tomato fruit ripening.

Karlova R, Rosin FM, Busscher-Lange J, Parapunova V, Do PT, Fernie AR, Fraser PD, Baxter C, Angenent GC, de Maagd RA.

Plant Cell. 2011 Mar;23(3):923-41. doi: 10.1105/tpc.110.081273. Epub 2011 Mar 11.

21.

RNA interference in Lepidoptera: an overview of successful and unsuccessful studies and implications for experimental design.

Terenius O, Papanicolaou A, Garbutt JS, Eleftherianos I, Huvenne H, Kanginakudru S, Albrechtsen M, An C, Aymeric JL, Barthel A, Bebas P, Bitra K, Bravo A, Chevalier F, Collinge DP, Crava CM, de Maagd RA, Duvic B, Erlandson M, Faye I, Felföldi G, Fujiwara H, Futahashi R, Gandhe AS, Gatehouse HS, Gatehouse LN, Giebultowicz JM, Gómez I, Grimmelikhuijzen CJ, Groot AT, Hauser F, Heckel DG, Hegedus DD, Hrycaj S, Huang L, Hull JJ, Iatrou K, Iga M, Kanost MR, Kotwica J, Li C, Li J, Liu J, Lundmark M, Matsumoto S, Meyering-Vos M, Millichap PJ, Monteiro A, Mrinal N, Niimi T, Nowara D, Ohnishi A, Oostra V, Ozaki K, Papakonstantinou M, Popadic A, Rajam MV, Saenko S, Simpson RM, Soberón M, Strand MR, Tomita S, Toprak U, Wang P, Wee CW, Whyard S, Zhang W, Nagaraju J, Ffrench-Constant RH, Herrero S, Gordon K, Swevers L, Smagghe G.

J Insect Physiol. 2011 Feb;57(2):231-45. doi: 10.1016/j.jinsphys.2010.11.006. Epub 2010 Nov 20. Review.

PMID:
21078327
22.

Constitutive activation of the midgut response to Bacillus thuringiensis in Bt-resistant Spodoptera exigua.

Hernández-Martínez P, Navarro-Cerrillo G, Caccia S, de Maagd RA, Moar WJ, Ferré J, Escriche B, Herrero S.

PLoS One. 2010 Sep 17;5(9). pii: e12795. doi: 10.1371/journal.pone.0012795.

23.

Solubilization, activation, and insecticidal activity of Bacillus thuringiensis serovar thompsoni HD542 crystal proteins.

Naimov S, Boncheva R, Karlova R, Dukiandjiev S, Minkov I, de Maagd RA.

Appl Environ Microbiol. 2008 Dec;74(23):7145-51. doi: 10.1128/AEM.00752-08. Epub 2008 Oct 3.

24.

REPAT, a new family of proteins induced by bacterial toxins and baculovirus infection in Spodoptera exigua.

Herrero S, Ansems M, Van Oers MM, Vlak JM, Bakker PL, de Maagd RA.

Insect Biochem Mol Biol. 2007 Nov;37(11):1109-18. Epub 2007 Jun 27.

PMID:
17916497
25.

Permeability changes of Manduca sexta midgut brush border membranes induced by oligomeric structures of different cry toxins.

Muñoz-Garay C, Sánchez J, Darszon A, de Maagd RA, Bakker P, Soberón M, Bravo A.

J Membr Biol. 2006;212(1):61-8. Epub 2007 Jan 6. Erratum in: J Membr Biol. 2012 Dec;245(12):859.

PMID:
17206518
26.
27.

Carboxy-terminal extension effects on crystal formation and insecticidal properties of Colorado potato beetle-active Bacillus thuringiensis delta-endotoxins.

Naimov S, Martens-Uzunova E, Weemen-Hendriks M, Dukiandjiev S, Minkov I, de Maagd RA.

Mol Biotechnol. 2006 Mar;32(3):185-96.

PMID:
16632885
28.

Activity of Bacillus thuringiensis delta-endotoxins against codling moth (Cydia pomonella L.) larvae.

Boncheva R, Dukiandjiev S, Minkov I, de Maagd RA, Naimov S.

J Invertebr Pathol. 2006 Jun;92(2):96-9. Epub 2006 Mar 10.

PMID:
16530218
29.

Lack of detrimental effects of Bacillus thuringiensis Cry toxins on the insect predator Chrysoperla carnea: a toxicological, histopathological, and biochemical analysis.

Rodrigo-Simón A, de Maagd RA, Avilla C, Bakker PL, Molthoff J, González-Zamora JE, Ferré J.

Appl Environ Microbiol. 2006 Feb;72(2):1595-603.

30.

Two different Bacillus thuringiensis toxin genes confer resistance to beet armyworm (Spodoptera exigua Hübner) in transgenic Bt-shallots (Allium cepa L.).

Zheng SJ, Henken B, de Maagd RA, Purwito A, Krens FA, Kik C.

Transgenic Res. 2005 Jun;14(3):261-72.

PMID:
16145834
31.

Identification and recombinant expression of a novel chymotrypsin from Spodoptera exigua.

Herrero S, Combes E, Van Oers MM, Vlak JM, de Maagd RA, Beekwilder J.

Insect Biochem Mol Biol. 2005 Oct;35(10):1073-82.

PMID:
16102414
32.

Bt toxin not guilty by association.

de Maagd RA, Bravo A, Crickmore N.

Nat Biotechnol. 2005 Jul;23(7):791. No abstract available.

PMID:
16003355
33.

Bacillus thuringiensis Cry1Ca-resistant Spodoptera exigua lacks expression of one of four Aminopeptidase N genes.

Herrero S, Gechev T, Bakker PL, Moar WJ, de Maagd RA.

BMC Genomics. 2005 Jun 24;6:96.

34.

Bacillus thuringiensis delta-endotoxin Cry1Ac domain III enhances activity against Heliothis virescens in some, but not all Cry1-Cry1Ac hybrids.

Karlova R, Weemen-Hendriks M, Naimov S, Ceron J, Dukiandjiev S, de Maagd RA.

J Invertebr Pathol. 2005 Feb;88(2):169-72. Epub 2005 Jan 5.

PMID:
15766934
35.

Mutations in the Bacillus thuringiensis Cry1Ca toxin demonstrate the role of domains II and III in specificity towards Spodoptera exigua larvae.

Herrero S, González-Cabrera J, Ferré J, Bakker PL, de Maagd RA.

Biochem J. 2004 Dec 15;384(Pt 3):507-13.

36.

Activity of Bacillus thuringiensis toxins against cocoa pod borer larvae.

Santoso D, Chaidamsari T, Wiryadiputra S, de Maagd RA.

Pest Manag Sci. 2004 Aug;60(8):735-8.

PMID:
15307664
37.

Structure, diversity, and evolution of protein toxins from spore-forming entomopathogenic bacteria.

de Maagd RA, Bravo A, Berry C, Crickmore N, Schnepf HE.

Annu Rev Genet. 2003;37:409-33. Review.

PMID:
14616068
38.

Activity of wild-type and hybrid Bacillus thuringiensis delta-endotoxins against Agrotis ipsilon.

de Maagd RA, Weemen-Hendriks M, Molthoff JW, Naimov S.

Arch Microbiol. 2003 May;179(5):363-7. Epub 2003 Apr 2.

PMID:
12677360
39.

Domain swapping of Citrus limon monoterpene synthases: impact on enzymatic activity and product specificity.

El Tamer MK, Lücker J, Bosch D, Verhoeven HA, Verstappen FW, Schwab W, van Tunen AJ, Voragen AG, de Maagd RA, Bouwmeester HJ.

Arch Biochem Biophys. 2003 Mar 15;411(2):196-203.

PMID:
12623068
40.

Translation of both 5'TOP and non-TOP host mRNAs continues into the late phase of Baculovirus infection.

van Oers MM, Doitsidou M, Thomas AA, de Maagd RA, Vlak JM.

Insect Mol Biol. 2003 Feb;12(1):75-84.

PMID:
12542638
41.

Bacillus thuringiensis delta-endotoxin Cry1 hybrid proteins with increased activity against the Colorado potato beetle.

Naimov S, Weemen-Hendriks M, Dukiandjiev S, de Maagd RA.

Appl Environ Microbiol. 2001 Nov;67(11):5328-30.

42.

How Bacillus thuringiensis has evolved specific toxins to colonize the insect world.

de Maagd RA, Bravo A, Crickmore N.

Trends Genet. 2001 Apr;17(4):193-9. Review.

PMID:
11275324
43.

Cross-resistance of pink bollworm (Pectinophora gossypiella) to Bacillus thuringiensis toxins.

Tabashnik BE, Liu YB, de Maagd RA, Dennehy TJ.

Appl Environ Microbiol. 2000 Oct;66(10):4582-4.

44.
45.

Identification of Bacillus thuringiensis delta-endotoxin Cry1C domain III amino acid residues involved in insect specificity.

de Maagd RA, Bakker P, Staykov N, Dukiandjiev S, Stiekema W, Bosch D.

Appl Environ Microbiol. 1999 Oct;65(10):4369-74.

46.

Interaction between functional domains of Bacillus thuringiensis insecticidal crystal proteins.

Rang C, Vachon V, de Maagd RA, Villalon M, Schwartz JL, Bosch D, Frutos R, Laprade R.

Appl Environ Microbiol. 1999 Jul;65(7):2918-25.

47.

toxin-mediated insect resistance in plants.

de Maagd RA, Bosch D, Stiekema W.

Trends Plant Sci. 1999 Jan;4(1):9-13.

PMID:
10234264
48.

Role of bacillus thuringiensis toxin domains in toxicity and receptor binding in the diamondback moth

Ballester V V, Granero F, de Maagd RA, Bosch D, Mensua JL, Ferre J.

Appl Environ Microbiol. 1999 May;65(5):1900-3.

49.

Domain III of the Bacillus thuringiensis delta-endotoxin Cry1Ac is involved in binding to Manduca sexta brush border membranes and to its purified aminopeptidase N.

de Maagd RA, Bakker PL, Masson L, Adang MJ, Sangadala S, Stiekema W, Bosch D.

Mol Microbiol. 1999 Jan;31(2):463-71.

50.

Toxicity and binding properties of the Bacillus thuringiensis delta-endotoxin Cry1C to cultured insect cells.

Kwa MS, de Maagd RA, Stiekema WJ, Vlak JM, Bosch D.

J Invertebr Pathol. 1998 Mar;71(2):121-7.

PMID:
9500946

Supplemental Content

Loading ...
Support Center