Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 344

1.

Mismatch repair hierarchy of Pseudomonas putida revealed by mutagenic ssDNA recombineering of the pyrF gene.

Aparicio T, Nyerges A, Nagy I, Pal C, Martínez-García E, de Lorenzo V.

Environ Microbiol. 2019 Oct 9. doi: 10.1111/1462-2920.14814. [Epub ahead of print]

PMID:
31599106
2.

A Broad Host Range Plasmid-Based Roadmap for ssDNA-Based Recombineering in Gram-Negative Bacteria.

Aparicio T, de Lorenzo V, Martínez-García E.

Methods Mol Biol. 2020;2075:383-398. doi: 10.1007/978-1-4939-9877-7_27.

PMID:
31584177
3.

Reverse Engineering of an Aspirin-Responsive Transcriptional Regulator in Escherichia coli.

Monteiro LMO, Arruda LCM, Sanches-Medeiros A, Martins-Santana L, Alves LF, Defelipe L, Turjanski AG, Guazzaroni MA, de Lorenzo VC, Silva-Rocha R.

ACS Synth Biol. 2019 Aug 16;8(8):1890-1900. doi: 10.1021/acssynbio.9b00191. Epub 2019 Aug 2.

PMID:
31362496
4.

CRISPR/Cas9-enhanced ssDNA recombineering for Pseudomonas putida.

Aparicio T, de Lorenzo V, Martínez-García E.

Microb Biotechnol. 2019 Sep;12(5):1076-1089. doi: 10.1111/1751-7915.13453. Epub 2019 Jun 25.

5.

Consent insufficient for data release-Response.

Amann RI, Baichoo S, Blencowe BJ, Bork P, Borodovsky M, Brooksbank C, Chain PSG, Colwell RR, Daffonchio DG, Danchin A, de Lorenzo V, Dorrestein PC, Finn RD, Fraser CM, Gilbert JA, Hallam SJ, Hugenholtz P, Ioannidis JPA, Jansson JK, Kim JF, Klenk HP, Klotz MG, Knight R, Konstantinidis KT, Kyrpides NC, Mason CE, McHardy AC, Meyer F, Ouzounis CA, Patrinos AAN, Podar M, Pollard KS, Ravel J, Muñoz AR, Roberts RJ, Rosselló-Móra R, Sansone SA, Schloss PD, Schriml LM, Setubal JC, Sorek R, Stevens RL, Tiedje JM, Turjanski A, Tyson GW, Ussery DW, Weinstock GM, White O, Whitman WB, Xenarios I.

Science. 2019 May 3;364(6439):446. doi: 10.1126/science.aax7509. No abstract available.

PMID:
31048484
6.

Pseudomonas putida in the quest of programmable chemistry.

Martínez-García E, de Lorenzo V.

Curr Opin Biotechnol. 2019 Oct;59:111-121. doi: 10.1016/j.copbio.2019.03.012. Epub 2019 Apr 30. Review.

PMID:
31048223
7.

Functional implementation of a linear glycolysis for sugar catabolism in Pseudomonas putida.

Sánchez-Pascuala A, Fernández-Cabezón L, de Lorenzo V, Nikel PI.

Metab Eng. 2019 Jul;54:200-211. doi: 10.1016/j.ymben.2019.04.005. Epub 2019 Apr 19.

PMID:
31009747
8.

Gross transcriptomic analysis of Pseudomonas putida for diagnosing environmental shifts.

Hueso-Gil Á, Calles B, O'Toole GA, de Lorenzo V.

Microb Biotechnol. 2019 Apr 7. doi: 10.1111/1751-7915.13404. [Epub ahead of print]

9.

The urgent need for microbiology literacy in society.

Timmis K, Cavicchioli R, Garcia JL, Nogales B, Chavarría M, Stein L, McGenity TJ, Webster N, Singh BK, Handelsman J, de Lorenzo V, Pruzzo C, Timmis J, Martín JLR, Verstraete W, Jetten M, Danchin A, Huang W, Gilbert J, Lal R, Santos H, Lee SY, Sessitsch A, Bonfante P, Gram L, Lin RTP, Ron E, Karahan ZC, van der Meer JR, Artunkal S, Jahn D, Harper L.

Environ Microbiol. 2019 May;21(5):1513-1528. doi: 10.1111/1462-2920.14611. Epub 2019 Apr 11. No abstract available.

PMID:
30912268
10.

Omnipresent Maxwell's demons orchestrate information management in living cells.

Boël G, Danot O, de Lorenzo V, Danchin A.

Microb Biotechnol. 2019 Mar;12(2):210-242. doi: 10.1111/1751-7915.13378.

11.

Spatial organization of the gene expression hardware in Pseudomonas putida.

Kim J, Goñi-Moreno A, Calles B, de Lorenzo V.

Environ Microbiol. 2019 May;21(5):1645-1658. doi: 10.1111/1462-2920.14544. Epub 2019 Mar 11.

PMID:
30689295
12.

Toward unrestricted use of public genomic data.

Amann RI, Baichoo S, Blencowe BJ, Bork P, Borodovsky M, Brooksbank C, Chain PSG, Colwell RR, Daffonchio DG, Danchin A, de Lorenzo V, Dorrestein PC, Finn RD, Fraser CM, Gilbert JA, Hallam SJ, Hugenholtz P, Ioannidis JPA, Jansson JK, Kim JF, Klenk HP, Klotz MG, Knight R, Konstantinidis KT, Kyrpides NC, Mason CE, McHardy AC, Meyer F, Ouzounis CA, Patrinos AAN, Podar M, Pollard KS, Ravel J, Muñoz AR, Roberts RJ, Rosselló-Móra R, Sansone SA, Schloss PD, Schriml LM, Setubal JC, Sorek R, Stevens RL, Tiedje JM, Turjanski A, Tyson GW, Ussery DW, Weinstock GM, White O, Whitman WB, Xenarios I.

Science. 2019 Jan 25;363(6425):350-352. doi: 10.1126/science.aaw1280. No abstract available.

13.

The important versus the exciting: reining contradictions in contemporary biotechnology.

de Lorenzo V, Couto J.

Microb Biotechnol. 2019 Jan;12(1):32-34. doi: 10.1111/1751-7915.13348. Epub 2018 Dec 3. No abstract available.

14.

Improved Thermotolerance of Genome-Reduced Pseudomonas putida EM42 Enables Effective Functioning of the PL /cI857 System.

Aparicio T, de Lorenzo V, Martínez-García E.

Biotechnol J. 2019 Jan;14(1):e1800483. doi: 10.1002/biot.201800483. Epub 2018 Nov 26.

PMID:
30417965
15.

Evolving metabolism of 2,4-dinitrotoluene triggers SOS-independent diversification of host cells.

Akkaya Ö, Nikel PI, Pérez-Pantoja D, de Lorenzo V.

Environ Microbiol. 2019 Jan;21(1):314-326. doi: 10.1111/1462-2920.14459. Epub 2018 Dec 3.

PMID:
30362300
16.

The Synthetic Microbiology Caucus: a fresh channel for exploring new ideas, challenging conventional wisdom and fostering community projects.

de Lorenzo V, Marliére P.

Microb Biotechnol. 2019 Jan;12(1):3-4. doi: 10.1111/1751-7915.13331. Epub 2018 Oct 25. No abstract available.

17.

A Post-translational Metabolic Switch Enables Complete Decoupling of Bacterial Growth from Biopolymer Production in Engineered Escherichia coli.

Durante-Rodríguez G, de Lorenzo V, Nikel PI.

ACS Synth Biol. 2018 Nov 16;7(11):2686-2697. doi: 10.1021/acssynbio.8b00345. Epub 2018 Oct 22.

PMID:
30346720
18.

The interplay of EIIANtr with C-source regulation of the Pu promoter of Pseudomonas putida mt-2.

Pérez-Pantoja D, Kim J, Platero R, de Lorenzo V.

Environ Microbiol. 2018 Dec;20(12):4555-4566. doi: 10.1111/1462-2920.14410. Epub 2018 Oct 5.

PMID:
30209872
19.

The Metabolic Redox Regime of Pseudomonas putida Tunes Its Evolvability toward Novel Xenobiotic Substrates.

Akkaya Ö, Pérez-Pantoja DR, Calles B, Nikel PI, de Lorenzo V.

MBio. 2018 Aug 28;9(4). pii: e01512-18. doi: 10.1128/mBio.01512-18.

20.

Dynamics of Pseudomonas putida biofilms in an upscale experimental framework.

Espeso DR, Martínez-García E, Carpio A, de Lorenzo V.

J Ind Microbiol Biotechnol. 2018 Oct;45(10):899-911. doi: 10.1007/s10295-018-2070-0. Epub 2018 Aug 21.

PMID:
30132198
21.

Evolutionary tinkering vs. rational engineering in the times of synthetic biology.

de Lorenzo V.

Life Sci Soc Policy. 2018 Aug 12;14(1):18. doi: 10.1186/s40504-018-0086-x.

22.

Modulating Heterologous Gene Expression with Portable mRNA-Stabilizing 5'-UTR Sequences.

Viegas SC, Apura P, Martínez-García E, de Lorenzo V, Arraiano CM.

ACS Synth Biol. 2018 Sep 21;7(9):2177-2188. doi: 10.1021/acssynbio.8b00191. Epub 2018 Aug 14.

PMID:
30064211
23.

The imbroglio of the physiological Cra effector clarified at last.

Chavarría M, de Lorenzo V.

Mol Microbiol. 2018 Aug;109(3):273-277. doi: 10.1111/mmi.14080. Epub 2018 Aug 7.

PMID:
30019355
24.

Refactoring the upper sugar metabolism of Pseudomonas putida for co-utilization of cellobiose, xylose, and glucose.

Dvořák P, de Lorenzo V.

Metab Eng. 2018 Jul;48:94-108. doi: 10.1016/j.ymben.2018.05.019. Epub 2018 Jun 2.

25.

Are We There Yet? How and When Specific Biotechnologies Will Improve Human Health.

O'Day E, Hosta-Rigau L, Oyarzún DA, Okano H, de Lorenzo V, von Kameke C, Alsafar H, Cao C, Chen GQ, Ji W, Roberts RJ, Ronaghi M, Yeung K, Zhang F, Lee SY.

Biotechnol J. 2019 Jan;14(1):e1800195. doi: 10.1002/biot.201800195. Epub 2018 Jun 13. Review.

26.

Pseudomonas putida as a functional chassis for industrial biocatalysis: From native biochemistry to trans-metabolism.

Nikel PI, de Lorenzo V.

Metab Eng. 2018 Nov;50:142-155. doi: 10.1016/j.ymben.2018.05.005. Epub 2018 May 16. Review.

27.

Bio-Algorithmic Workflows for Standardized Synthetic Biology Constructs.

Goñi-Moreno A, de Lorenzo V.

Methods Mol Biol. 2018;1772:363-372. doi: 10.1007/978-1-4939-7795-6_20.

PMID:
29754239
28.

Re-Factoring Glycolytic Genes for Targeted Engineering of Catabolism in Gram-Negative Bacteria.

Sánchez-Pascuala A, Nikel PI, de Lorenzo V.

Methods Mol Biol. 2018;1772:3-24. doi: 10.1007/978-1-4939-7795-6_1.

PMID:
29754220
29.

An Engineered Device for Indoleacetic Acid Production under Quorum Sensing Signals Enables Cupriavidus pinatubonensis JMP134 To Stimulate Plant Growth.

Zúñiga A, Fuente F, Federici F, Lionne C, Bônnet J, de Lorenzo V, González B.

ACS Synth Biol. 2018 Jun 15;7(6):1519-1527. doi: 10.1021/acssynbio.8b00002. Epub 2018 May 21.

PMID:
29746094
30.

The biofilm matrix polysaccharides cellulose and alginate both protect Pseudomonas putida mt-2 against reactive oxygen species generated under matric stress and copper exposure.

Svenningsen NB, Martínez-García E, Nicolaisen MH, de Lorenzo V, Nybroe O.

Microbiology. 2018 Jun;164(6):883-888. doi: 10.1099/mic.0.000667. Epub 2018 May 8.

PMID:
29738306
31.

The power of synthetic biology for bioproduction, remediation and pollution control: The UN's Sustainable Development Goals will inevitably require the application of molecular biology and biotechnology on a global scale.

de Lorenzo V, Prather KL, Chen GQ, O'Day E, von Kameke C, Oyarzún DA, Hosta-Rigau L, Alsafar H, Cao C, Ji W, Okano H, Roberts RJ, Ronaghi M, Yeung K, Zhang F, Lee SY.

EMBO Rep. 2018 Apr;19(4). pii: e45658. doi: 10.15252/embr.201745658. Epub 2018 Mar 26. No abstract available.

32.

Environmental microbiology to the rescue of planet earth.

de Lorenzo V.

Environ Microbiol. 2018 Jun;20(6):1910-1916. doi: 10.1111/1462-2920.14105. Epub 2018 Apr 6.

PMID:
29575463
33.

Assessing Carbon Source-Dependent Phenotypic Variability in Pseudomonas putida.

Nikel PI, de Lorenzo V.

Methods Mol Biol. 2018;1745:287-301. doi: 10.1007/978-1-4939-7680-5_16.

PMID:
29476475
34.

A standardized workflow for surveying recombinases expands bacterial genome-editing capabilities.

Ricaurte DE, Martínez-García E, Nyerges Á, Pál C, de Lorenzo V, Aparicio T.

Microb Biotechnol. 2018 Jan;11(1):176-188. doi: 10.1111/1751-7915.12846. Epub 2017 Nov 2.

35.

CRISPR/Cas9-Based Counterselection Boosts Recombineering Efficiency in Pseudomonas putida.

Aparicio T, de Lorenzo V, Martínez-García E.

Biotechnol J. 2018 May;13(5):e1700161. doi: 10.1002/biot.201700161. Epub 2017 Dec 4. Review.

PMID:
29058367
36.

The contribution of microbial biotechnology to economic growth and employment creation.

Timmis K, de Lorenzo V, Verstraete W, Ramos JL, Danchin A, Brüssow H, Singh BK, Timmis JK.

Microb Biotechnol. 2017 Sep;10(5):1137-1144. doi: 10.1111/1751-7915.12845. Epub 2017 Sep 4.

37.

The contribution of microbial biotechnology to sustainable development goals.

Timmis K, de Vos WM, Ramos JL, Vlaeminck SE, Prieto A, Danchin A, Verstraete W, de Lorenzo V, Lee SY, Brüssow H, Timmis JK, Singh BK.

Microb Biotechnol. 2017 Sep;10(5):984-987. doi: 10.1111/1751-7915.12818. Epub 2017 Aug 25.

38.

Bioremediation 3.0: Engineering pollutant-removing bacteria in the times of systemic biology.

Dvořák P, Nikel PI, Damborský J, de Lorenzo V.

Biotechnol Adv. 2017 Nov 15;35(7):845-866. doi: 10.1016/j.biotechadv.2017.08.001. Epub 2017 Aug 5. Review.

PMID:
28789939
39.

Seven microbial bio-processes to help the planet.

de Lorenzo V.

Microb Biotechnol. 2017 Sep;10(5):995-998. doi: 10.1111/1751-7915.12816. Epub 2017 Aug 3. No abstract available.

40.

Synthetic microbiology: from analogy to methodology.

de Lorenzo V.

Microb Biotechnol. 2017 Sep;10(5):1264-1266. doi: 10.1111/1751-7915.12786. Epub 2017 Jul 26. No abstract available.

41.

Molecular tools and emerging strategies for deep genetic/genomic refactoring of Pseudomonas.

Martínez-García E, de Lorenzo V.

Curr Opin Biotechnol. 2017 Oct;47:120-132. doi: 10.1016/j.copbio.2017.06.013. Epub 2017 Jul 21. Review.

PMID:
28738232
42.

Biological standards for the Knowledge-Based BioEconomy: What is at stake.

de Lorenzo V, Schmidt M.

N Biotechnol. 2018 Jan 25;40(Pt A):170-180. doi: 10.1016/j.nbt.2017.05.001. Epub 2017 May 4. Review.

PMID:
28479235
43.

The do-it-yourself movement as a source of innovation in biotechnology - and much more.

de Lorenzo V, Schmidt M.

Microb Biotechnol. 2017 May;10(3):517-519. doi: 10.1111/1751-7915.12715. Epub 2017 Apr 9. No abstract available.

44.

Deconvolution of Gene Expression Noise into Spatial Dynamics of Transcription Factor-Promoter Interplay.

Goñi-Moreno Á, Benedetti I, Kim J, de Lorenzo V.

ACS Synth Biol. 2017 Jul 21;6(7):1359-1369. doi: 10.1021/acssynbio.6b00397. Epub 2017 Apr 17.

PMID:
28355056
45.

Refactoring the Embden-Meyerhof-Parnas Pathway as a Whole of Portable GlucoBricks for Implantation of Glycolytic Modules in Gram-Negative Bacteria.

Sánchez-Pascuala A, de Lorenzo V, Nikel PI.

ACS Synth Biol. 2017 May 19;6(5):793-805. doi: 10.1021/acssynbio.6b00230. Epub 2017 Feb 9.

46.

A Metabolic Widget Adjusts the Phosphoenolpyruvate-Dependent Fructose Influx in Pseudomonas putida.

Chavarría M, Goñi-Moreno Á, de Lorenzo V, Nikel PI.

mSystems. 2016 Dec 6;1(6). pii: e00154-16. eCollection 2016 Nov-Dec.

47.

An Implementation-Focused Bio/Algorithmic Workflow for Synthetic Biology.

Goñi-Moreno A, Carcajona M, Kim J, Martínez-García E, Amos M, de Lorenzo V.

ACS Synth Biol. 2016 Oct 21;5(10):1127-1135. Epub 2016 Aug 9.

PMID:
27454551
48.

Nitrogen regulation of the xyl genes of Pseudomonas putida mt-2 propagates into a significant effect of nitrate on m-xylene mineralization in soil.

Svenningsen NB, Nicolaisen MH, Hansen HC, de Lorenzo V, Nybroe O.

Microb Biotechnol. 2016 Nov;9(6):814-823. doi: 10.1111/1751-7915.12404. Epub 2016 Aug 26.

49.

Editorial overview: Microbial systems biology: systems biology prepares the ground for successful synthetic biology.

Takors R, de Lorenzo V.

Curr Opin Microbiol. 2016 Oct;33:viii-x. doi: 10.1016/j.mib.2016.08.003. Epub 2016 Aug 24. No abstract available.

PMID:
27568258
50.

Engineering Gram-Negative Microbial Cell Factories Using Transposon Vectors.

Martínez-García E, Aparicio T, de Lorenzo V, Nikel PI.

Methods Mol Biol. 2017;1498:273-293.

PMID:
27709582

Supplemental Content

Loading ...
Support Center