Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 10

1.

Genus-Wide Assessment of Lignocellulose Utilization in the Extremely Thermophilic Genus Caldicellulosiruptor by Genomic, Pangenomic, and Metagenomic Analyses.

Lee LL, Blumer-Schuette SE, Izquierdo JA, Zurawski JV, Loder AJ, Conway JM, Elkins JG, Podar M, Clum A, Jones PC, Piatek MJ, Weighill DA, Jacobson DA, Adams MWW, Kelly RM.

Appl Environ Microbiol. 2018 Apr 16;84(9). pii: e02694-17. doi: 10.1128/AEM.02694-17. Print 2018 May 1.

2.

Impact of growth mode, phase, and rate on the metabolic state of the extremely thermophilic archaeon Pyrococcus furiosus.

Khatibi PA, Chou CJ, Loder AJ, Zurawski JV, Adams MWW, Kelly RM.

Biotechnol Bioeng. 2017 Dec;114(12):2947-2954. doi: 10.1002/bit.26408. Epub 2017 Oct 6.

3.

Bioavailability of Carbohydrate Content in Natural and Transgenic Switchgrasses for the Extreme Thermophile Caldicellulosiruptor bescii.

Zurawski JV, Khatibi PA, Akinosho HO, Straub CT, Compton SH, Conway JM, Lee LL, Ragauskas AJ, Davison BH, Adams MWW, Kelly RM.

Appl Environ Microbiol. 2017 Aug 17;83(17). pii: e00969-17. doi: 10.1128/AEM.00969-17. Print 2017 Sep 1.

4.

Caldicellulosiruptor saccharolyticus transcriptomes reveal consequences of chemical pretreatment and genetic modification of lignocellulose.

Blumer-Schuette SE, Zurawski JV, Conway JM, Khatibi P, Lewis DL, Li Q, Chiang VL, Kelly RM.

Microb Biotechnol. 2017 Nov;10(6):1546-1557. doi: 10.1111/1751-7915.12494. Epub 2017 Mar 20.

5.

Multidomain, Surface Layer-associated Glycoside Hydrolases Contribute to Plant Polysaccharide Degradation by Caldicellulosiruptor Species.

Conway JM, Pierce WS, Le JH, Harper GW, Wright JH, Tucker AL, Zurawski JV, Lee LL, Blumer-Schuette SE, Kelly RM.

J Biol Chem. 2016 Mar 25;291(13):6732-47. doi: 10.1074/jbc.M115.707810. Epub 2016 Jan 26.

6.

Comparative Analysis of Extremely Thermophilic Caldicellulosiruptor Species Reveals Common and Unique Cellular Strategies for Plant Biomass Utilization.

Zurawski JV, Conway JM, Lee LL, Simpson HJ, Izquierdo JA, Blumer-Schuette S, Nookaew I, Adams MW, Kelly RM.

Appl Environ Microbiol. 2015 Oct;81(20):7159-70. doi: 10.1128/AEM.01622-15. Epub 2015 Aug 7.

7.

Complete Genome Sequences of Caldicellulosiruptor sp. Strain Rt8.B8, Caldicellulosiruptor sp. Strain Wai35.B1, and "Thermoanaerobacter cellulolyticus".

Lee LL, Izquierdo JA, Blumer-Schuette SE, Zurawski JV, Conway JM, Cottingham RW, Huntemann M, Copeland A, Chen IM, Kyrpides N, Markowitz V, Palaniappan K, Ivanova N, Mikhailova N, Ovchinnikova G, Andersen E, Pati A, Stamatis D, Reddy TB, Shapiro N, Nordberg HP, Cantor MN, Hua SX, Woyke T, Kelly RM.

Genome Announc. 2015 May 14;3(3). pii: e00440-15. doi: 10.1128/genomeA.00440-15.

8.

Discrete and structurally unique proteins (tāpirins) mediate attachment of extremely thermophilic Caldicellulosiruptor species to cellulose.

Blumer-Schuette SE, Alahuhta M, Conway JM, Lee LL, Zurawski JV, Giannone RJ, Hettich RL, Lunin VV, Himmel ME, Kelly RM.

J Biol Chem. 2015 Apr 24;290(17):10645-56. doi: 10.1074/jbc.M115.641480. Epub 2015 Feb 26.

9.

Thermophilic lignocellulose deconstruction.

Blumer-Schuette SE, Brown SD, Sander KB, Bayer EA, Kataeva I, Zurawski JV, Conway JM, Adams MW, Kelly RM.

FEMS Microbiol Rev. 2014 May;38(3):393-448. doi: 10.1111/1574-6976.12044. Epub 2013 Nov 13. Review.

10.

Caldicellulosiruptor core and pangenomes reveal determinants for noncellulosomal thermophilic deconstruction of plant biomass.

Blumer-Schuette SE, Giannone RJ, Zurawski JV, Ozdemir I, Ma Q, Yin Y, Xu Y, Kataeva I, Poole FL 2nd, Adams MW, Hamilton-Brehm SD, Elkins JG, Larimer FW, Land ML, Hauser LJ, Cottingham RW, Hettich RL, Kelly RM.

J Bacteriol. 2012 Aug;194(15):4015-28. doi: 10.1128/JB.00266-12. Epub 2012 May 25.

Supplemental Content

Loading ...
Support Center