Sort by
Items per page

Send to

Choose Destination

Search results

Items: 12


Manganese-Induced Neurotoxicity: New Insights Into the Triad of Protein Misfolding, Mitochondrial Impairment, and Neuroinflammation.

Harischandra DS, Ghaisas S, Zenitsky G, Jin H, Kanthasamy A, Anantharam V, Kanthasamy AG.

Front Neurosci. 2019 Jun 26;13:654. doi: 10.3389/fnins.2019.00654. eCollection 2019. Review.


Utilization of the CRISPR-Cas9 Gene Editing System to Dissect Neuroinflammatory and Neuropharmacological Mechanisms in Parkinson's Disease.

Luo J, Padhi P, Jin H, Anantharam V, Zenitsky G, Wang Q, Willette AA, Kanthasamy A, Kanthasamy AG.

J Neuroimmune Pharmacol. 2019 Dec;14(4):595-607. doi: 10.1007/s11481-019-09844-3. Epub 2019 Mar 16. Review.


Manganese promotes the aggregation and prion-like cell-to-cell exosomal transmission of α-synuclein.

Harischandra DS, Rokad D, Neal ML, Ghaisas S, Manne S, Sarkar S, Panicker N, Zenitsky G, Jin H, Lewis M, Huang X, Anantharam V, Kanthasamy A, Kanthasamy AG.

Sci Signal. 2019 Mar 12;12(572). pii: eaau4543. doi: 10.1126/scisignal.aau4543.


Lasting Retinal Injury in a Mouse Model of Blast-Induced Trauma.

Mammadova N, Ghaisas S, Zenitsky G, Sakaguchi DS, Kanthasamy AG, Greenlee JJ, West Greenlee MH.

Am J Pathol. 2017 Jul;187(7):1459-1472. doi: 10.1016/j.ajpath.2017.03.005. Epub 2017 Jun 9.


Manganese exposure induces neuroinflammation by impairing mitochondrial dynamics in astrocytes.

Sarkar S, Malovic E, Harischandra DS, Ngwa HA, Ghosh A, Hogan C, Rokad D, Zenitsky G, Jin H, Anantharam V, Kanthasamy AG, Kanthasamy A.

Neurotoxicology. 2018 Jan;64:204-218. doi: 10.1016/j.neuro.2017.05.009. Epub 2017 May 21.


Rapid and Refined CD11b Magnetic Isolation of Primary Microglia with Enhanced Purity and Versatility.

Sarkar S, Malovic E, Plante B, Zenitsky G, Jin H, Anantharam V, Kanthasamy A, Kanthasamy AG.

J Vis Exp. 2017 Apr 13;(122). doi: 10.3791/55364.


Blocking glutamate-mediated inferior olivary signals abolishes expression of conditioned eyeblinks but does not prevent their acquisition.

Carrel AJ, Zenitsky GD, Bracha V.

J Neurosci. 2013 May 22;33(21):9097-103. doi: 10.1523/JNEUROSCI.3129-12.2013.


A trigeminal conditioned stimulus yields fast acquisition of cerebellum-dependent conditioned eyeblinks.

Carrel AJ, Zbarska S, Zenitsky GD, Bracha V.

Behav Brain Res. 2012 Jan 1;226(1):189-96. doi: 10.1016/j.bbr.2011.09.010. Epub 2011 Sep 12.


The cerebellum and eye-blink conditioning: learning versus network performance hypotheses.

Bracha V, Zbarska S, Parker K, Carrel A, Zenitsky G, Bloedel JR.

Neuroscience. 2009 Sep 1;162(3):787-96. doi: 10.1016/j.neuroscience.2008.12.042. Epub 2008 Dec 30. Review.


Inactivation of cerebellar output axons impairs acquisition of conditioned eyeblinks.

Nilaweera WU, Zenitsky GD, Bracha V.

Brain Res. 2006 Nov 29;1122(1):143-53. Epub 2006 Oct 24.


Inactivation of the brachium conjunctivum prevents extinction of classically conditioned eyeblinks.

Nilaweera WU, Zenitsky GD, Bracha V.

Brain Res. 2005 May 31;1045(1-2):175-84. Epub 2005 Apr 22.


Video recording system for the measurement of eyelid movements during classical conditioning of the eyeblink response in the rabbit.

Bracha V, Nilaweera W, Zenitsky G, Irwin K.

J Neurosci Methods. 2003 May 30;125(1-2):173-81.


Supplemental Content

Loading ...
Support Center