Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 13

1.

CRISPR-Cas9 genome editing in human cells occurs via the Fanconi anemia pathway.

Richardson CD, Kazane KR, Feng SJ, Zelin E, Bray NL, Schäfer AJ, Floor SN, Corn JE.

Nat Genet. 2018 Aug;50(8):1132-1139. doi: 10.1038/s41588-018-0174-0. Epub 2018 Jul 27.

PMID:
30054595
2.

In vitro-transcribed guide RNAs trigger an innate immune response via the RIG-I pathway.

Wienert B, Shin J, Zelin E, Pestal K, Corn JE.

PLoS Biol. 2018 Jul 16;16(7):e2005840. doi: 10.1371/journal.pbio.2005840. eCollection 2018 Jul.

3.

BARD1 is necessary for ubiquitylation of nucleosomal histone H2A and for transcriptional regulation of estrogen metabolism genes.

Stewart MD, Zelin E, Dhall A, Walsh T, Upadhyay E, Corn JE, Chatterjee C, King MC, Klevit RE.

Proc Natl Acad Sci U S A. 2018 Feb 6;115(6):1316-1321. doi: 10.1073/pnas.1715467115. Epub 2018 Jan 24.

4.

Lysine deacetylases regulate the heat shock response including the age-associated impairment of HSF1.

Zelin E, Freeman BC.

J Mol Biol. 2015 Apr 10;427(7):1644-54. doi: 10.1016/j.jmb.2015.02.010. Epub 2015 Feb 15.

5.

The p23 molecular chaperone and GCN5 acetylase jointly modulate protein-DNA dynamics and open chromatin status.

Zelin E, Zhang Y, Toogun OA, Zhong S, Freeman BC.

Mol Cell. 2012 Nov 9;48(3):459-70. doi: 10.1016/j.molcel.2012.08.026. Epub 2012 Sep 27.

6.

Global functional map of the p23 molecular chaperone reveals an extensive cellular network.

Echtenkamp FJ, Zelin E, Oxelmark E, Woo JI, Andrews BJ, Garabedian M, Freeman BC.

Mol Cell. 2011 Jul 22;43(2):229-41. doi: 10.1016/j.molcel.2011.05.029.

7.

Efficient control of group I intron ribozyme catalysis by DNA constraints.

Zelin E, Silverman SK.

Chem Commun (Camb). 2009 Feb 21;(7):767-9. doi: 10.1039/b820676g. Epub 2009 Jan 14.

8.

Allosteric control of ribozyme catalysis by using DNA constraints.

Zelin E, Silverman SK.

Chembiochem. 2007 Nov 5;8(16):1907-11. No abstract available.

PMID:
17876755
9.
10.

Identification of a novel stress-responsive gene Hi95 involved in regulation of cell viability.

Budanov AV, Shoshani T, Faerman A, Zelin E, Kamer I, Kalinski H, Gorodin S, Fishman A, Chajut A, Einat P, Skaliter R, Gudkov AV, Chumakov PM, Feinstein E.

Oncogene. 2002 Sep 5;21(39):6017-31.

11.

Identification of a novel hypoxia-inducible factor 1-responsive gene, RTP801, involved in apoptosis.

Shoshani T, Faerman A, Mett I, Zelin E, Tenne T, Gorodin S, Moshel Y, Elbaz S, Budanov A, Chajut A, Kalinski H, Kamer I, Rozen A, Mor O, Keshet E, Leshkowitz D, Einat P, Skaliter R, Feinstein E.

Mol Cell Biol. 2002 Apr;22(7):2283-93.

12.

Activation of HTLV-I long terminal repeat by stress-inducing agents and protection of HTLV-I-infected T-cells from apoptosis by the viral tax protein.

Torgeman A, Ben-Aroya Z, Grunspan A, Zelin E, Butovsky E, Hallak M, Löchelt M, Flügel RM, Livneh E, Wolfson M, Kedar I, Aboud M.

Exp Cell Res. 2001 Nov 15;271(1):169-79.

PMID:
11697893
13.

Sp1-p53 heterocomplex mediates activation of HTLV-I long terminal repeat by 12-O-tetradecanoylphorbol-13-acetate that is antagonized by protein kinase C.

Torgeman A, Mor-Vaknin N, Zelin E, Ben-Aroya Z, Löchelt M, Flügel RM, Aboud M.

Virology. 2001 Mar 1;281(1):10-20.

Supplemental Content

Support Center