Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 18

1.

Cancer Nanotechnology: Opportunities for Prevention, Diagnosis, and Therapy.

Zeineldin R, Syoufjy J.

Methods Mol Biol. 2017;1530:3-12. doi: 10.1007/978-1-4939-6646-2_1. Review.

PMID:
28150193
2.

Effect of chirality and length on the penetrability of single-walled carbon nanotubes into lipid bilayer cell membranes.

Skandani AA, Zeineldin R, Al-Haik M.

Langmuir. 2012 May 22;28(20):7872-9. doi: 10.1021/la3011162. Epub 2012 May 10.

PMID:
22545729
3.

Novel nanotechnology approaches to diagnosis and therapy of ovarian cancer.

Kim PS, Djazayeri S, Zeineldin R.

Gynecol Oncol. 2011 Mar;120(3):393-403. doi: 10.1016/j.ygyno.2010.11.029. Epub 2010 Dec 18. Review.

PMID:
21168905
4.

Biomimetic silica microspheres in biosensing.

Chemburu S, Fenton K, Lopez GP, Zeineldin R.

Molecules. 2010 Mar 17;15(3):1932-57. doi: 10.3390/molecules15031932. Review.

5.

The constitutive activity of epidermal growth factor receptor vIII leads to activation and differential trafficking of wild-type epidermal growth factor receptor and erbB2.

Zeineldin R, Ning Y, Hudson LG.

J Histochem Cytochem. 2010 Jun;58(6):529-41. doi: 10.1369/jhc.2010.955104. Epub 2010 Feb 15.

6.

Targeting the EGF receptor for ovarian cancer therapy.

Zeineldin R, Muller CY, Stack MS, Hudson LG.

J Oncol. 2010;2010:414676. doi: 10.1155/2010/414676. Epub 2009 Dec 28.

7.

Activated epidermal growth factor receptor in ovarian cancer.

Hudson LG, Zeineldin R, Silberberg M, Stack MS.

Cancer Treat Res. 2009;149:203-26. doi: 10.1007/978-0-387-98094-2_10. Review. No abstract available.

8.

Role of polyethylene glycol integrity in specific receptor targeting of carbon nanotubes to cancer cells.

Zeineldin R, Al-Haik M, Hudson LG.

Nano Lett. 2009 Feb;9(2):751-7. doi: 10.1021/nl8033174.

PMID:
19152309
9.

Biosensors based on release of compounds upon disruption of lipid bilayers supported on porous microspheres.

Piyasena ME, Zeineldin R, Fenton K, Buranda T, Lopez GP.

Biointerphases. 2008 Jun;3(2):38. doi: 10.1116/1.2918743.

PMID:
20408688
10.

Phenotypic plasticity of neoplastic ovarian epithelium: unique cadherin profiles in tumor progression.

Hudson LG, Zeineldin R, Stack MS.

Clin Exp Metastasis. 2008;25(6):643-55. doi: 10.1007/s10585-008-9171-5. Epub 2008 Apr 9. Review.

11.

Detection of membrane biointeractions based on fluorescence superquenching.

Zeineldin R, Piyasena ME, Sklar LA, Whitten D, Lopez GP.

Langmuir. 2008 Apr 15;24(8):4125-31. doi: 10.1021/la703575r. Epub 2008 Feb 27.

PMID:
18302435
12.
13.

Using bicellar mixtures to form supported and suspended lipid bilayers on silicon chips.

Zeineldin R, Last JA, Slade AL, Ista LK, Bisong P, O'Brien MJ, Brueck SR, Sasaki DY, Lopez GP.

Langmuir. 2006 Sep 12;22(19):8163-8.

PMID:
16952257
14.

Mesenchymal transformation in epithelial ovarian tumor cells expressing epidermal growth factor receptor variant III.

Zeineldin R, Rosenberg M, Ortega D, Buhr C, Chavez MG, Stack MS, Kusewitt DF, Hudson LG.

Mol Carcinog. 2006 Nov;45(11):851-60.

PMID:
16788982
15.

Epithelial cell migration in response to epidermal growth factor.

Zeineldin R, Hudson LG.

Methods Mol Biol. 2006;327:147-58.

PMID:
16780219
16.

Superquenching as a detector for microsphere-based flow cytometric assays.

Zeineldin R, Piyasena ME, Bergstedt TS, Sklar LA, Whitten D, Lopez GP.

Cytometry A. 2006 May;69(5):335-41.

17.
18.

Oligomeric forms of the 148 kDa cartilage matrix protein.

Zeineldin R, Ekborg S, Baker J.

Biochem J. 1997 Dec 1;328 ( Pt 2):665-8.

Supplemental Content

Loading ...
Support Center