Sort by
Items per page

Send to

Choose Destination

Search results

Items: 28


Mitochondrial PE potentiates respiratory enzymes to amplify skeletal muscle aerobic capacity.

Heden TD, Johnson JM, Ferrara PJ, Eshima H, Verkerke ARP, Wentzler EJ, Siripoksup P, Narowski TM, Coleman CB, Lin CT, Ryan TE, Reidy PT, de Castro Brás LE, Karner CM, Burant CF, Maschek JA, Cox JE, Mashek DG, Kardon G, Boudina S, Zeczycki TN, Rutter J, Shaikh SR, Vance JE, Drummond MJ, Neufer PD, Funai K.

Sci Adv. 2019 Sep 11;5(9):eaax8352. doi: 10.1126/sciadv.aax8352. eCollection 2019 Sep.


Extensive skeletal muscle cell mitochondriopathy distinguishes critical limb ischemia patients from claudicants.

Ryan TE, Yamaguchi DJ, Schmidt CA, Zeczycki TN, Shaikh SR, Brophy P, Green TD, Tarpey MD, Karnekar R, Goldberg EJ, Sparagna GC, Torres MJ, Annex BH, Neufer PD, Spangenburg EE, McClung JM.

JCI Insight. 2018 Nov 2;3(21). pii: 123235. doi: 10.1172/jci.insight.123235.


The Manganese-Dependent Pyruvate Kinase PykM Is Required for Wild-Type Glucose Utilization by Brucella abortus 2308 and Its Virulence in C57BL/6 Mice.

Pitzer JE, Zeczycki TN, Baumgartner JE, Martin DW, Roop RM 2nd.

J Bacteriol. 2018 Nov 26;200(24). pii: e00471-18. doi: 10.1128/JB.00471-18. Print 2018 Dec 15.


Impact of 17β-estradiol on complex I kinetics and H2O2 production in liver and skeletal muscle mitochondria.

Torres MJ, Ryan TE, Lin CT, Zeczycki TN, Neufer PD.

J Biol Chem. 2018 Oct 26;293(43):16889-16898. doi: 10.1074/jbc.RA118.005148. Epub 2018 Sep 14.


Proteolipid domains form in biomimetic and cardiac mitochondrial vesicles and are regulated by cardiolipin concentration but not monolyso-cardiolipin.

Pennington ER, Sullivan EM, Fix A, Dadoo S, Zeczycki TN, DeSantis A, Schlattner U, Coleman RA, Chicco AJ, Brown DA, Shaikh SR.

J Biol Chem. 2018 Oct 12;293(41):15933-15946. doi: 10.1074/jbc.RA118.004948. Epub 2018 Aug 29.


15(V/K) kinetic isotope effect and steady-state kinetic analysis for the transglutaminase 2 catalyzed deamidation and transamidation reactions.

Wells EA, Anderson MA, Zeczycki TN.

Arch Biochem Biophys. 2018 Apr 2;643:57-61. doi: 10.1016/ Epub 2018 Feb 23.


Docosahexaenoic acid lowers cardiac mitochondrial enzyme activity by replacing linoleic acid in the phospholipidome.

Sullivan EM, Pennington ER, Sparagna GC, Torres MJ, Neufer PD, Harris M, Washington J, Anderson EJ, Zeczycki TN, Brown DA, Shaikh SR.

J Biol Chem. 2018 Jan 12;293(2):466-483. doi: 10.1074/jbc.M117.812834. Epub 2017 Nov 21.


17β-Estradiol Directly Lowers Mitochondrial Membrane Microviscosity and Improves Bioenergetic Function in Skeletal Muscle.

Torres MJ, Kew KA, Ryan TE, Pennington ER, Lin CT, Buddo KA, Fix AM, Smith CA, Gilliam LA, Karvinen S, Lowe DA, Spangenburg EE, Zeczycki TN, Shaikh SR, Neufer PD.

Cell Metab. 2018 Jan 9;27(1):167-179.e7. doi: 10.1016/j.cmet.2017.10.003. Epub 2017 Nov 2.


Multiple non-catalytic ADAMs are novel integrin α4 ligands.

Wang L, Hoggard JA, Korleski ED, Long GV, Ree BC, Hensley K, Bond SR, Wolfsberg TG, Chen J, Zeczycki TN, Bridges LC.

Mol Cell Biochem. 2018 May;442(1-2):29-38. doi: 10.1007/s11010-017-3190-y. Epub 2017 Sep 14.


Kinetic and Thermodynamic Analysis of Acetyl-CoA Activation of Staphylococcus aureus Pyruvate Carboxylase.

Westerhold LE, Bridges LC, Shaikh SR, Zeczycki TN.

Biochemistry. 2017 Jul 11;56(27):3492-3506. doi: 10.1021/acs.biochem.7b00383. Epub 2017 Jun 28.


Murine diet-induced obesity remodels cardiac and liver mitochondrial phospholipid acyl chains with differential effects on respiratory enzyme activity.

Sullivan EM, Fix A, Crouch MJ, Sparagna GC, Zeczycki TN, Brown DA, Shaikh SR.

J Nutr Biochem. 2017 Jul;45:94-103. doi: 10.1016/j.jnutbio.2017.04.004. Epub 2017 Apr 12.


Pyruvate Occupancy in the Carboxyl Transferase Domain of Pyruvate Carboxylase Facilitates Product Release from the Biotin Carboxylase Domain through an Intermolecular Mechanism.

Westerhold LE, Adams SL, Bergman HL, Zeczycki TN.

Biochemistry. 2016 Jun 21;55(24):3447-60. doi: 10.1021/acs.biochem.6b00372. Epub 2016 Jun 9.


Ceramide-tamoxifen regimen targets bioenergetic elements in acute myelogenous leukemia.

Morad SA, Ryan TE, Neufer PD, Zeczycki TN, Davis TS, MacDougall MR, Fox TE, Tan SF, Feith DJ, Loughran TP Jr, Kester M, Claxton DF, Barth BM, Deering TG, Cabot MC.

J Lipid Res. 2016 Jul;57(7):1231-42. doi: 10.1194/jlr.M067389. Epub 2016 May 2.


Increasing mitochondrial membrane phospholipid content lowers the enzymatic activity of electron transport complexes.

Shaikh SR, Sullivan EM, Alleman RJ, Brown DA, Zeczycki TN.

Biochemistry. 2014 Sep 9;53(35):5589-91. doi: 10.1021/bi500868g. Epub 2014 Aug 26.


Increasing levels of cardiolipin differentially influence packing of phospholipids found in the mitochondrial inner membrane.

Zeczycki TN, Whelan J, Hayden WT, Brown DA, Shaikh SR.

Biochem Biophys Res Commun. 2014 Jul 18;450(1):366-71. doi: 10.1016/j.bbrc.2014.05.133. Epub 2014 Jun 4.


Nearly 50 years in the making: defining the catalytic mechanism of the multifunctional enzyme, pyruvate carboxylase.

Menefee AL, Zeczycki TN.

FEBS J. 2014 Mar;281(5):1333-54. doi: 10.1111/febs.12713. Epub 2014 Jan 29. Review.


Oxamate is an alternative substrate for pyruvate carboxylase from Rhizobium etli.

Marlier JF, Cleland WW, Zeczycki TN.

Biochemistry. 2013 Apr 30;52(17):2888-94. doi: 10.1021/bi400075t. Epub 2013 Apr 18.


Roles of Arg427 and Arg472 in the binding and allosteric effects of acetyl CoA in pyruvate carboxylase.

Adina-Zada A, Sereeruk C, Jitrapakdee S, Zeczycki TN, St Maurice M, Cleland WW, Wallace JC, Attwood PV.

Biochemistry. 2012 Oct 16;51(41):8208-17. doi: 10.1021/bi301060d. Epub 2012 Oct 2.


Allosteric regulation of the biotin-dependent enzyme pyruvate carboxylase by acetyl-CoA.

Adina-Zada A, Zeczycki TN, St Maurice M, Jitrapakdee S, Cleland WW, Attwood PV.

Biochem Soc Trans. 2012 Jun 1;40(3):567-72. doi: 10.1042/BST20120041. Review.


Regulation of the structure and activity of pyruvate carboxylase by acetyl CoA.

Adina-Zada A, Zeczycki TN, Attwood PV.

Arch Biochem Biophys. 2012 Mar 15;519(2):118-30. doi: 10.1016/ Epub 2011 Nov 19. Review.


Activation and inhibition of pyruvate carboxylase from Rhizobium etli.

Zeczycki TN, Menefee AL, Jitrapakdee S, Wallace JC, Attwood PV, St Maurice M, Cleland WW.

Biochemistry. 2011 Nov 15;50(45):9694-707. doi: 10.1021/bi201276r. Epub 2011 Oct 14.


Interaction between the biotin carboxyl carrier domain and the biotin carboxylase domain in pyruvate carboxylase from Rhizobium etli.

Lietzan AD, Menefee AL, Zeczycki TN, Kumar S, Attwood PV, Wallace JC, Cleland WW, St Maurice M.

Biochemistry. 2011 Nov 15;50(45):9708-23. doi: 10.1021/bi201277j. Epub 2011 Oct 18.


Novel insights into the biotin carboxylase domain reactions of pyruvate carboxylase from Rhizobium etli.

Zeczycki TN, Menefee AL, Adina-Zada A, Jitrapakdee S, Surinya KH, Wallace JC, Attwood PV, St Maurice M, Cleland WW.

Biochemistry. 2011 Nov 15;50(45):9724-37. doi: 10.1021/bi2012788. Epub 2011 Oct 13.


Probing the allosteric activation of pyruvate carboxylase using 2',3'-O-(2,4,6-trinitrophenyl) adenosine 5'-triphosphate as a fluorescent mimic of the allosteric activator acetyl CoA.

Adina-Zada A, Hazra R, Sereeruk C, Jitrapakdee S, Zeczycki TN, St Maurice M, Cleland WW, Wallace JC, Attwood PV.

Arch Biochem Biophys. 2011 May 15;509(2):117-26. doi: 10.1016/ Epub 2011 Mar 21.


Probing the catalytic roles of Arg548 and Gln552 in the carboxyl transferase domain of the Rhizobium etli pyruvate carboxylase by site-directed mutagenesis.

Duangpan S, Jitrapakdee S, Adina-Zada A, Byrne L, Zeczycki TN, St Maurice M, Cleland WW, Wallace JC, Attwood PV.

Biochemistry. 2010 Apr 20;49(15):3296-304. doi: 10.1021/bi901894t.


Inhibitors of Pyruvate Carboxylase.

Zeczycki TN, Maurice MS, Attwood PV.

Open Enzym Inhib J. 2010;3:8-26.


Insight into the carboxyl transferase domain mechanism of pyruvate carboxylase from Rhizobium etli.

Zeczycki TN, St Maurice M, Jitrapakdee S, Wallace JC, Attwood PV, Cleland WW.

Biochemistry. 2009 May 26;48(20):4305-13. doi: 10.1021/bi9003759.


Supplemental Content

Loading ...
Support Center