Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 27

1.

A new family of transcriptional regulators of tungstoenzymes and molybdate/tungstate transport.

Rajeev L, Garber ME, Zane GM, Price MN, Dubchak I, Wall JD, Novichkov PS, Mukhopadhyay A, Kazakov AE.

Environ Microbiol. 2018 Dec 10. doi: 10.1111/1462-2920.14500. [Epub ahead of print]

PMID:
30536693
2.

Iron- and aluminium-induced depletion of molybdenum in acidic environments impedes the nitrogen cycle.

Ge X, Vaccaro BJ, Thorgersen MP, Poole FL 2nd, Majumder EL, Zane GM, De León KB, Lancaster WA, Moon JW, Paradis CJ, von Netzer F, Stahl DA, Adams PD, Arkin AP, Wall JD, Hazen TC, Adams MWW.

Environ Microbiol. 2018 Oct 5. doi: 10.1111/1462-2920.14435. [Epub ahead of print]

PMID:
30289197
3.

Mutant phenotypes for thousands of bacterial genes of unknown function.

Price MN, Wetmore KM, Waters RJ, Callaghan M, Ray J, Liu H, Kuehl JV, Melnyk RA, Lamson JS, Suh Y, Carlson HK, Esquivel Z, Sadeeshkumar H, Chakraborty R, Zane GM, Rubin BE, Wall JD, Visel A, Bristow J, Blow MJ, Arkin AP, Deutschbauer AM.

Nature. 2018 May;557(7706):503-509. doi: 10.1038/s41586-018-0124-0. Epub 2018 May 16.

4.

Cr(VI) reduction and physiological toxicity are impacted by resource ratio in Desulfovibrio vulgaris.

Franco LC, Steinbeisser S, Zane GM, Wall JD, Fields MW.

Appl Microbiol Biotechnol. 2018 Mar;102(6):2839-2850. doi: 10.1007/s00253-017-8724-4. Epub 2018 Feb 10.

5.

Filling gaps in bacterial amino acid biosynthesis pathways with high-throughput genetics.

Price MN, Zane GM, Kuehl JV, Melnyk RA, Wall JD, Deutschbauer AM, Arkin AP.

PLoS Genet. 2018 Jan 11;14(1):e1007147. doi: 10.1371/journal.pgen.1007147. eCollection 2018 Jan.

6.

Key Metabolites and Mechanistic Changes for Salt Tolerance in an Experimentally Evolved Sulfate-Reducing Bacterium, Desulfovibrio vulgaris.

Zhou A, Lau R, Baran R, Ma J, von Netzer F, Shi W, Gorman-Lewis D, Kempher ML, He Z, Qin Y, Shi Z, Zane GM, Wu L, Bowen BP, Northen TR, Hillesland KL, Stahl DA, Wall JD, Arkin AP, Zhou J.

MBio. 2017 Nov 14;8(6). pii: e01780-17. doi: 10.1128/mBio.01780-17.

7.

Unintended Laboratory-Driven Evolution Reveals Genetic Requirements for Biofilm Formation by Desulfovibrio vulgaris Hildenborough.

De León KB, Zane GM, Trotter VV, Krantz GP, Arkin AP, Butland GP, Walian PJ, Fields MW, Wall JD.

MBio. 2017 Oct 17;8(5). pii: e01696-17. doi: 10.1128/mBio.01696-17.

8.

Mechanisms of Chromium and Uranium Toxicity in Pseudomonas stutzeri RCH2 Grown under Anaerobic Nitrate-Reducing Conditions.

Thorgersen MP, Lancaster WA, Ge X, Zane GM, Wetmore KM, Vaccaro BJ, Poole FL 2nd, Younkin AD, Deutschbauer AM, Arkin AP, Wall JD, Adams MWW.

Front Microbiol. 2017 Aug 10;8:1529. doi: 10.3389/fmicb.2017.01529. eCollection 2017.

9.

Mechanism for microbial population collapse in a fluctuating resource environment.

Turkarslan S, Raman AV, Thompson AW, Arens CE, Gillespie MA, von Netzer F, Hillesland KL, Stolyar S, López García de Lomana A, Reiss DJ, Gorman-Lewis D, Zane GM, Ranish JA, Wall JD, Stahl DA, Baliga NS.

Mol Syst Biol. 2017 Mar 20;13(3):919. doi: 10.15252/msb.20167058.

10.

Novel Metal Cation Resistance Systems from Mutant Fitness Analysis of Denitrifying Pseudomonas stutzeri.

Vaccaro BJ, Lancaster WA, Thorgersen MP, Zane GM, Younkin AD, Kazakov AE, Wetmore KM, Deutschbauer A, Arkin AP, Novichkov PS, Wall JD, Adams MW.

Appl Environ Microbiol. 2016 Sep 16;82(19):6046-56. doi: 10.1128/AEM.01845-16. Print 2016 Oct 1.

11.

Regulation of Nitrite Stress Response in Desulfovibrio vulgaris Hildenborough, a Model Sulfate-Reducing Bacterium.

Rajeev L, Chen A, Kazakov AE, Luning EG, Zane GM, Novichkov PS, Wall JD, Mukhopadhyay A.

J Bacteriol. 2015 Nov;197(21):3400-8. doi: 10.1128/JB.00319-15. Epub 2015 Aug 17.

12.

Rapid selective sweep of pre-existing polymorphisms and slow fixation of new mutations in experimental evolution of Desulfovibrio vulgaris.

Zhou A, Hillesland KL, He Z, Schackwitz W, Tu Q, Zane GM, Ma Q, Qu Y, Stahl DA, Wall JD, Hazen TC, Fields MW, Arkin AP, Zhou J.

ISME J. 2015 Nov;9(11):2360-72. doi: 10.1038/ismej.2015.45. Epub 2015 Apr 7.

13.

Sulfur isotope fractionation during the evolutionary adaptation of a sulfate-reducing bacterium.

Pellerin A, Anderson-Trocmé L, Whyte LG, Zane GM, Wall JD, Wing BA.

Appl Environ Microbiol. 2015 Apr;81(8):2676-89. doi: 10.1128/AEM.03476-14. Epub 2015 Feb 6.

14.

Biofilm growth mode promotes maximum carrying capacity and community stability during product inhibition syntrophy.

Brileya KA, Camilleri LB, Zane GM, Wall JD, Fields MW.

Front Microbiol. 2014 Dec 15;5:693. doi: 10.3389/fmicb.2014.00693. eCollection 2014.

15.

Rex (encoded by DVU_0916) in Desulfovibrio vulgaris Hildenborough is a repressor of sulfate adenylyl transferase and is regulated by NADH.

Christensen GA, Zane GM, Kazakov AE, Li X, Rodionov DA, Novichkov PS, Dubchak I, Arkin AP, Wall JD.

J Bacteriol. 2015 Jan 1;197(1):29-39. doi: 10.1128/JB.02083-14. Epub 2014 Oct 13.

16.

Erosion of functional independence early in the evolution of a microbial mutualism.

Hillesland KL, Lim S, Flowers JJ, Turkarslan S, Pinel N, Zane GM, Elliott N, Qin Y, Wu L, Baliga NS, Zhou J, Wall JD, Stahl DA.

Proc Natl Acad Sci U S A. 2014 Oct 14;111(41):14822-7. doi: 10.1073/pnas.1407986111. Epub 2014 Sep 29.

17.

Identification of a cyclic-di-GMP-modulating response regulator that impacts biofilm formation in a model sulfate reducing bacterium.

Rajeev L, Luning EG, Altenburg S, Zane GM, Baidoo EE, Catena M, Keasling JD, Wall JD, Fields MW, Mukhopadhyay A.

Front Microbiol. 2014 Jul 29;5:382. doi: 10.3389/fmicb.2014.00382. eCollection 2014.

18.

Genetic basis for nitrate resistance in Desulfovibrio strains.

Korte HL, Fels SR, Christensen GA, Price MN, Kuehl JV, Zane GM, Deutschbauer AM, Arkin AP, Wall JD.

Front Microbiol. 2014 Apr 21;5:153. doi: 10.3389/fmicb.2014.00153. eCollection 2014.

19.

Exploring the role of CheA3 in Desulfovibrio vulgaris Hildenborough motility.

Ray J, Keller KL, Catena M, Juba TR, Zemla M, Rajeev L, Knierim B, Zane GM, Robertson JJ, Auer M, Wall JD, Mukhopadhyay A.

Front Microbiol. 2014 Mar 6;5:77. doi: 10.3389/fmicb.2014.00077. eCollection 2014.

20.

Rapid transposon liquid enrichment sequencing (TnLE-seq) for gene fitness evaluation in underdeveloped bacterial systems.

Fels SR, Zane GM, Blake SM, Wall JD.

Appl Environ Microbiol. 2013 Dec;79(23):7510-7. doi: 10.1128/AEM.02051-13. Epub 2013 Sep 27.

21.

New family of tungstate-responsive transcriptional regulators in sulfate-reducing bacteria.

Kazakov AE, Rajeev L, Luning EG, Zane GM, Siddartha K, Rodionov DA, Dubchak I, Arkin AP, Wall JD, Mukhopadhyay A, Novichkov PS.

J Bacteriol. 2013 Oct;195(19):4466-75. doi: 10.1128/JB.00679-13. Epub 2013 Aug 2.

22.

Fractionation of sulfur isotopes by Desulfovibrio vulgaris mutants lacking hydrogenases or type I tetraheme cytochrome c 3.

Sim MS, Wang DT, Zane GM, Wall JD, Bosak T, Ono S.

Front Microbiol. 2013 Jun 25;4:171. doi: 10.3389/fmicb.2013.00171. eCollection 2013.

23.

Deletion of the Desulfovibrio vulgaris carbon monoxide sensor invokes global changes in transcription.

Rajeev L, Hillesland KL, Zane GM, Zhou A, Joachimiak MP, He Z, Zhou J, Arkin AP, Wall JD, Stahl DA.

J Bacteriol. 2012 Nov;194(21):5783-93. doi: 10.1128/JB.00749-12. Epub 2012 Aug 17.

24.

Functional characterization of Crp/Fnr-type global transcriptional regulators in Desulfovibrio vulgaris Hildenborough.

Zhou A, Chen YI, Zane GM, He Z, Hemme CL, Joachimiak MP, Baumohl JK, He Q, Fields MW, Arkin AP, Wall JD, Hazen TC, Zhou J.

Appl Environ Microbiol. 2012 Feb;78(4):1168-77. doi: 10.1128/AEM.05666-11. Epub 2011 Dec 9.

25.

Generalized schemes for high-throughput manipulation of the Desulfovibrio vulgaris genome.

Chhabra SR, Butland G, Elias DA, Chandonia JM, Fok OY, Juba TR, Gorur A, Allen S, Leung CM, Keller KL, Reveco S, Zane GM, Semkiw E, Prathapam R, Gold B, Singer M, Ouellet M, Szakal ED, Jorgens D, Price MN, Witkowska HE, Beller HR, Arkin AP, Hazen TC, Biggin MD, Auer M, Wall JD, Keasling JD.

Appl Environ Microbiol. 2011 Nov;77(21):7595-604. doi: 10.1128/AEM.05495-11. Epub 2011 Sep 9.

26.

Towards a rigorous network of protein-protein interactions of the model sulfate reducer Desulfovibrio vulgaris Hildenborough.

Chhabra SR, Joachimiak MP, Petzold CJ, Zane GM, Price MN, Reveco SA, Fok V, Johanson AR, Batth TS, Singer M, Chandonia JM, Joyner D, Hazen TC, Arkin AP, Wall JD, Singh AK, Keasling JD.

PLoS One. 2011;6(6):e21470. doi: 10.1371/journal.pone.0021470. Epub 2011 Jun 28.

27.

Effect of the deletion of qmoABC and the promoter-distal gene encoding a hypothetical protein on sulfate reduction in Desulfovibrio vulgaris Hildenborough.

Zane GM, Yen HC, Wall JD.

Appl Environ Microbiol. 2010 Aug;76(16):5500-9. doi: 10.1128/AEM.00691-10. Epub 2010 Jun 25.

Supplemental Content

Support Center