Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 73

1.

Environmental filtering structures fungal endophyte communities in tree bark.

Pellitier PT, Zak DR, Salley SO.

Mol Ecol. 2019 Sep 8. doi: 10.1111/mec.15237. [Epub ahead of print]

PMID:
31495020
2.

Anthropogenic N deposition alters soil organic matter biochemistry and microbial communities on decaying fine roots.

Argiroff WA, Zak DR, Upchurch RA, Salley SO, Grandy AS.

Glob Chang Biol. 2019 Jul 17. doi: 10.1111/gcb.14770. [Epub ahead of print]

PMID:
31314956
3.

Anthropogenic N deposition, fungal gene expression, and an increasing soil carbon sink in the Northern Hemisphere.

Zak DR, Argiroff WA, Freedman ZB, Upchurch RA, Entwistle EM, Romanowicz KJ.

Ecology. 2019 Jun 30:e02804. doi: 10.1002/ecy.2804. [Epub ahead of print]

PMID:
31257580
4.

Decadal biomass increment in early secondary succession woody ecosystems is increased by CO2 enrichment.

Walker AP, De Kauwe MG, Medlyn BE, Zaehle S, Iversen CM, Asao S, Guenet B, Harper A, Hickler T, Hungate BA, Jain AK, Luo Y, Lu X, Lu M, Luus K, Megonigal JP, Oren R, Ryan E, Shu S, Talhelm A, Wang YP, Warren JM, Werner C, Xia J, Yang B, Zak DR, Norby RJ.

Nat Commun. 2019 Feb 14;10(1):454. doi: 10.1038/s41467-019-08348-1.

5.

Exploring the role of ectomycorrhizal fungi in soil carbon dynamics.

Zak DR, Pellitier PT, Argiroff W, Castillo B, James TY, Nave LE, Averill C, Beidler KV, Bhatnagar J, Blesh J, Classen AT, Craig M, Fernandez CW, Gundersen P, Johansen R, Koide RT, Lilleskov EA, Lindahl BD, Nadelhoffer KJ, Phillips RP, Tunlid A.

New Phytol. 2019 Jul;223(1):33-39. doi: 10.1111/nph.15679. Epub 2019 Feb 8.

PMID:
30636276
6.

Anthropogenic N Deposition Alters the Composition of Expressed Class II Fungal Peroxidases.

Entwistle EM, Romanowicz KJ, Argiroff WA, Freedman ZB, Morris JJ, Zak DR.

Appl Environ Microbiol. 2018 Apr 16;84(9). pii: e02816-17. doi: 10.1128/AEM.02816-17. Print 2018 May 1.

7.

Anthropogenic nitrogen deposition ameliorates the decline in tree growth caused by a drier climate.

Ibáñez I, Zak DR, Burton AJ, Pregitzer KS.

Ecology. 2018 Feb;99(2):411-420. doi: 10.1002/ecy.2095. Epub 2018 Jan 17.

8.

Ectomycorrhizal fungi and the enzymatic liberation of nitrogen from soil organic matter: why evolutionary history matters.

Pellitier PT, Zak DR.

New Phytol. 2018 Jan;217(1):68-73. doi: 10.1111/nph.14598. Epub 2017 May 18. Review.

9.

Comment on "Mycorrhizal association as a primary control of the CO2 fertilization effect".

Norby RJ, De Kauwe MG, Walker AP, Werner C, Zaehle S, Zak DR.

Science. 2017 Jan 27;355(6323):358. doi: 10.1126/science.aai7976.

PMID:
28126781
10.

Soil microbial communities and elk foraging intensity: implications for soil biogeochemical cycling in the sagebrush steppe.

Cline LC, Zak DR, Upchurch RA, Freedman ZB, Peschel AR.

Ecol Lett. 2017 Feb;20(2):202-211. doi: 10.1111/ele.12722.

11.

Microbial Community Functional Potential and Composition Are Shaped by Hydrologic Connectivity in Riverine Floodplain Soils.

Argiroff WA, Zak DR, Lanser CM, Wiley MJ.

Microb Ecol. 2017 Apr;73(3):630-644. doi: 10.1007/s00248-016-0883-9. Epub 2016 Nov 2.

PMID:
27807645
12.

Microbial Potential for Ecosystem N Loss Is Increased by Experimental N Deposition.

Freedman ZB, Upchurch RA, Zak DR.

PLoS One. 2016 Oct 13;11(10):e0164531. doi: 10.1371/journal.pone.0164531. eCollection 2016.

13.

Anthropogenic N deposition increases soil organic matter accumulation without altering its biochemical composition.

Zak DR, Freedman ZB, Upchurch RA, Steffens M, Kögel-Knabner I.

Glob Chang Biol. 2017 Feb;23(2):933-944. doi: 10.1111/gcb.13480. Epub 2016 Oct 11.

14.

Chronic nitrogen deposition alters tree allometric relationships: implications for biomass production and carbon storage.

Ibáñez I, Zak DR, Burton AJ, Pregitzer KS.

Ecol Appl. 2016 Apr;26(3):913-25.

PMID:
27411260
15.

Active microorganisms in forest soils differ from the total community yet are shaped by the same environmental factors: the influence of pH and soil moisture.

Romanowicz KJ, Freedman ZB, Upchurch RA, Argiroff WA, Zak DR.

FEMS Microbiol Ecol. 2016 Oct;92(10). pii: fiw149. doi: 10.1093/femsec/fiw149. Epub 2016 Jul 6.

PMID:
27387909
16.

Anthropogenic N Deposition Slows Decay by Favoring Bacterial Metabolism: Insights from Metagenomic Analyses.

Freedman ZB, Upchurch RA, Zak DR, Cline LC.

Front Microbiol. 2016 Mar 2;7:259. doi: 10.3389/fmicb.2016.00259. eCollection 2016.

18.
19.

Initial colonization, community assembly and ecosystem function: fungal colonist traits and litter biochemistry mediate decay rate.

Cline LC, Zak DR.

Mol Ecol. 2015 Oct;24(19):5045-58. doi: 10.1111/mec.13361. Epub 2015 Sep 26.

20.

Assembly of Active Bacterial and Fungal Communities Along a Natural Environmental Gradient.

Mueller RC, Gallegos-Graves L, Zak DR, Kuske CR.

Microb Ecol. 2016 Jan;71(1):57-67. doi: 10.1007/s00248-015-0655-y. Epub 2015 Aug 18.

PMID:
26280745
21.

Forest floor community metatranscriptomes identify fungal and bacterial responses to N deposition in two maple forests.

Hesse CN, Mueller RC, Vuyisich M, Gallegos-Graves LV, Gleasner CD, Zak DR, Kuske CR.

Front Microbiol. 2015 Apr 23;6:337. doi: 10.3389/fmicb.2015.00337. eCollection 2015.

22.

Atmospheric N deposition alters connectance, but not functional potential among saprotrophic bacterial communities.

Freedman ZB, Zak DR.

Mol Ecol. 2015 Jun;24(12):3170-80. doi: 10.1111/mec.13224. Epub 2015 Jun 5.

23.

Soil bacterial communities are shaped by temporal and environmental filtering: evidence from a long-term chronosequence.

Freedman Z, Zak DR.

Environ Microbiol. 2015 Sep;17(9):3208-18. doi: 10.1111/1462-2920.12762. Epub 2015 Feb 11.

24.

Atmospheric N deposition increases bacterial laccase-like multicopper oxidases: implications for organic matter decay.

Freedman Z, Zak DR.

Appl Environ Microbiol. 2014 Jul;80(14):4460-8. doi: 10.1128/AEM.01224-14. Epub 2014 May 16.

25.

Widespread occurrence of expressed fungal secretory peroxidases in forest soils.

Kellner H, Luis P, Pecyna MJ, Barbi F, Kapturska D, Krüger D, Zak DR, Marmeisse R, Vandenbol M, Hofrichter M.

PLoS One. 2014 Apr 24;9(4):e95557. doi: 10.1371/journal.pone.0095557. eCollection 2014.

26.

Elevated carbon dioxide and ozone alter productivity and ecosystem carbon content in northern temperate forests.

Talhelm AF, Pregitzer KS, Kubiske ME, Zak DR, Campany CE, Burton AJ, Dickson RE, Hendrey GR, Isebrands JG, Lewin KF, Nagy J, Karnosky DF.

Glob Chang Biol. 2014 Aug;20(8):2492-504. doi: 10.1111/gcb.12564. Epub 2014 May 26.

27.
28.

Dispersal limitation structures fungal community assembly in a long-term glacial chronosequence.

Cline LC, Zak DR.

Environ Microbiol. 2014 Jun;16(6):1538-48. doi: 10.1111/1462-2920.12281. Epub 2013 Oct 10.

29.

Microbial mechanisms mediating increased soil C storage under elevated atmospheric N deposition.

Eisenlord SD, Freedman Z, Zak DR, Xue K, He Z, Zhou J.

Appl Environ Microbiol. 2013 Feb;79(4):1191-9. doi: 10.1128/AEM.03156-12. Epub 2012 Dec 7. Erratum in: Appl Environ Microbiol. 2013 Apr;79(8):2847.

30.

Sinks for nitrogen inputs in terrestrial ecosystems: a meta-analysis of 15N tracer field studies.

Templer PH, Mack MC, Chapin FS 3rd, Christenson LM, Compton JE, Crook HD, Currie WS, Curtis CJ, Dail DB, D'Antonio CM, Emmett BA, Epstein HE, Goodale CL, Gundersen P, Hobbie SE, Holland K, Hooper DU, Hungate BA, Lamontagne S, Nadelhoffer KJ, Osenberg CW, Perakis SS, Schleppi P, Schimel J, Schmidt IK, Sommerkorn M, Spoelstra J, Tietema A, Wessel WW, Zak DR.

Ecology. 2012 Aug;93(8):1816-29.

31.

Dispersal limitation and the assembly of soil Actinobacteria communities in a long-term chronosequence.

Eisenlord SD, Zak DR, Upchurch RA.

Ecol Evol. 2012 Mar;2(3):538-49. doi: 10.1002/ece3.210.

32.

Common bacterial responses in six ecosystems exposed to 10 years of elevated atmospheric carbon dioxide.

Dunbar J, Eichorst SA, Gallegos-Graves LV, Silva S, Xie G, Hengartner NW, Evans RD, Hungate BA, Jackson RB, Megonigal JP, Schadt CW, Vilgalys R, Zak DR, Kuske CR.

Environ Microbiol. 2012 May;14(5):1145-58. doi: 10.1111/j.1462-2920.2011.02695.x. Epub 2012 Jan 20.

33.

Forest productivity under elevated CO₂ and O₃: positive feedbacks to soil N cycling sustain decade-long net primary productivity enhancement by CO₂.

Zak DR, Pregitzer KS, Kubiske ME, Burton AJ.

Ecol Lett. 2011 Dec;14(12):1220-6. doi: 10.1111/j.1461-0248.2011.01692.x. Epub 2011 Oct 10.

34.

Responses of soil cellulolytic fungal communities to elevated atmospheric CO₂ are complex and variable across five ecosystems.

Weber CF, Zak DR, Hungate BA, Jackson RB, Vilgalys R, Evans RD, Schadt CW, Megonigal JP, Kuske CR.

Environ Microbiol. 2011 Oct;13(10):2778-93. doi: 10.1111/j.1462-2920.2011.02548.x. Epub 2011 Sep 1.

35.

Simulated atmospheric N deposition alters fungal community composition and suppresses ligninolytic gene expression in a northern hardwood forest.

Edwards IP, Zak DR, Kellner H, Eisenlord SD, Pregitzer KS.

PLoS One. 2011;6(6):e20421. doi: 10.1371/journal.pone.0020421. Epub 2011 Jun 20.

36.

Nitrogen turnover in the leaf litter and fine roots of sugar maple.

Pregitzer KS, Zak DR, Talhelm AF, Burton AJ, Eikenberry JR.

Ecology. 2010 Dec;91(12):3456-62; discussion 3503-14.

37.

Slowed decomposition is biotically mediated in an ectomycorrhizal, tropical rain forest.

McGuire KL, Zak DR, Edwards IP, Blackwood CB, Upchurch R.

Oecologia. 2010 Nov;164(3):785-95. doi: 10.1007/s00442-010-1686-1. Epub 2010 Jun 25.

PMID:
20577764
38.

Fungi unearthed: transcripts encoding lignocellulolytic and chitinolytic enzymes in forest soil.

Kellner H, Zak DR, Vandenbol M.

PLoS One. 2010 Jun 4;5(6):e10971. doi: 10.1371/journal.pone.0010971. Erratum in: PLoS One. 2010;5(9). doi: 10.1371/annotation/84b7b537-84f6-49e6-ac7c-9a2f0ad3f862. Zak, Donald R [added].

39.

Phylogenetic similarity and structure of Agaricomycotina communities across a forested landscape.

Edwards IP, Zak DR.

Mol Ecol. 2010 Apr;19(7):1469-82. doi: 10.1111/j.1365-294X.2010.04566.x.

40.

Species-specific responses to atmospheric carbon dioxide and tropospheric ozone mediate changes in soil carbon.

Talhelm AF, Pregitzer KS, Zak DR.

Ecol Lett. 2009 Nov;12(11):1219-28. doi: 10.1111/j.1461-0248.2009.01380.x. Epub 2009 Sep 15.

41.

Simulated atmospheric NO3- deposition increases soil organic matter by slowing decomposition.

Zak DR, Holmes WE, Burton AJ, Pregitzer KS, Talhelm AF.

Ecol Appl. 2008 Dec;18(8):2016-27. Erratum in: Ecol Appl. 2010 Jun;20(4):1190.

PMID:
19263894
42.

Stoichiometry of soil enzyme activity at global scale.

Sinsabaugh RL, Lauber CL, Weintraub MN, Ahmed B, Allison SD, Crenshaw C, Contosta AR, Cusack D, Frey S, Gallo ME, Gartner TB, Hobbie SE, Holland K, Keeler BL, Powers JS, Stursova M, Takacs-Vesbach C, Waldrop MP, Wallenstein MD, Zak DR, Zeglin LH.

Ecol Lett. 2008 Nov;11(11):1252-1264. doi: 10.1111/j.1461-0248.2008.01245.x. Epub 2008 Sep 25.

43.

Are basidiomycete laccase gene abundance and composition related to reduced lignolytic activity under elevated atmospheric NO3(-) deposition in a northern hardwood forest?

Hassett JE, Zak DR, Blackwood CB, Pregitzer KS.

Microb Ecol. 2009 May;57(4):728-39. doi: 10.1007/s00248-008-9440-5. Epub 2008 Sep 13.

PMID:
18791762
44.

Laccase gene composition and relative abundance in oak forest soil is not affected by short-term nitrogen fertilization.

Lauber CL, Sinsabaugh RL, Zak DR.

Microb Ecol. 2009 Jan;57(1):50-7. doi: 10.1007/s00248-008-9437-0. Epub 2008 Aug 29.

PMID:
18758844
45.

Soil fertility increases with plant species diversity in a long-term biodiversity experiment.

Dybzinski R, Fargione JE, Zak DR, Fornara D, Tilman D.

Oecologia. 2008 Nov;158(1):85-93. doi: 10.1007/s00442-008-1123-x. Epub 2008 Aug 9.

PMID:
18690478
46.

Soil respiration, root biomass, and root turnover following long-term exposure of northern forests to elevated atmospheric CO2 and tropospheric O3.

Pregitzer KS, Burton AJ, King JS, Zak DR.

New Phytol. 2008;180(1):153-61. doi: 10.1111/j.1469-8137.2008.02564.x. Epub 2008 Jul 14.

47.

Isolation of fungal cellobiohydrolase I genes from sporocarps and forest soils by PCR.

Edwards IP, Upchurch RA, Zak DR.

Appl Environ Microbiol. 2008 Jun;74(11):3481-9. doi: 10.1128/AEM.02893-07. Epub 2008 Apr 11.

48.

Atmospheric CO2 and O3 alter the flow of 15N in developing forest ecosystems.

Zak DR, Holmes WE, Pregitzer KS.

Ecology. 2007 Oct;88(10):2630-9.

49.

Increases in nitrogen uptake rather than nitrogen-use efficiency support higher rates of temperate forest productivity under elevated CO2.

Finzi AC, Norby RJ, Calfapietra C, Gallet-Budynek A, Gielen B, Holmes WE, Hoosbeek MR, Iversen CM, Jackson RB, Kubiske ME, Ledford J, Liberloo M, Oren R, Polle A, Pritchard S, Zak DR, Schlesinger WH, Ceulemans R.

Proc Natl Acad Sci U S A. 2007 Aug 28;104(35):14014-9. Epub 2007 Aug 20.

50.

Interpreting ecological diversity indices applied to terminal restriction fragment length polymorphism data: insights from simulated microbial communities.

Blackwood CB, Hudleston D, Zak DR, Buyer JS.

Appl Environ Microbiol. 2007 Aug;73(16):5276-83. Epub 2007 Jun 29.

Supplemental Content

Support Center