Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 13

1.

Correction to: Quantitative phosphoproteomic analysis reveals reciprocal activation of receptor tyrosine kinases between cancer epithelial cells and stromal fibroblasts.

Wu X, Zahari MS, Renuse S, Sahasrabuddhe NA, Chaerkady R, Kim MS, Fackler MJ, Stampfer M, Gabrielson E, Sukumar S, Pandey A.

Clin Proteomics. 2018 Nov 17;15:37. doi: 10.1186/s12014-018-9210-4. eCollection 2018.

2.

Quantitative phosphoproteomic analysis reveals reciprocal activation of receptor tyrosine kinases between cancer epithelial cells and stromal fibroblasts.

Wu X, Zahari MS, Renuse S, Sahasrabuddhe NA, Chaerkady R, Kim MS, Fackler MJ, Stampfer M, Gabrielson E, Sukumar S, Pandey A.

Clin Proteomics. 2018 Jun 15;15:21. doi: 10.1186/s12014-018-9197-x. eCollection 2018. Erratum in: Clin Proteomics. 2018 Nov 17;15:37.

3.

The non-receptor tyrosine kinase TNK2/ACK1 is a novel therapeutic target in triple negative breast cancer.

Wu X, Zahari MS, Renuse S, Kelkar DS, Barbhuiya MA, Rojas PL, Stearns V, Gabrielson E, Malla P, Sukumar S, Mahajan NP, Pandey A.

Oncotarget. 2017 Jan 10;8(2):2971-2983. doi: 10.18632/oncotarget.13579.

4.

Global phosphotyrosine survey in triple-negative breast cancer reveals activation of multiple tyrosine kinase signaling pathways.

Wu X, Zahari MS, Ma B, Liu R, Renuse S, Sahasrabuddhe NA, Chen L, Chaerkady R, Kim MS, Zhong J, Jelinek C, Barbhuiya MA, Leal-Rojas P, Yang Y, Kashyap MK, Marimuthu A, Ling M, Fackler MJ, Merino V, Zhang Z, Zahnow CA, Gabrielson E, Stearns V, Roa JC, Sukumar S, Gill PS, Pandey A.

Oncotarget. 2015 Oct 6;6(30):29143-60. doi: 10.18632/oncotarget.5020.

5.

Phosphoproteomic Analysis Identifies Focal Adhesion Kinase 2 (FAK2) as a Potential Therapeutic Target for Tamoxifen Resistance in Breast Cancer.

Wu X, Zahari MS, Renuse S, Nirujogi RS, Kim MS, Manda SS, Stearns V, Gabrielson E, Sukumar S, Pandey A.

Mol Cell Proteomics. 2015 Nov;14(11):2887-900. doi: 10.1074/mcp.M115.050484. Epub 2015 Sep 1.

6.

Phosphoproteomic profiling of tumor tissues identifies HSP27 Ser82 phosphorylation as a robust marker of early ischemia.

Zahari MS, Wu X, Pinto SM, Nirujogi RS, Kim MS, Fetics B, Philip M, Barnes SR, Godfrey B, Gabrielson E, Nevo E, Pandey A.

Sci Rep. 2015 Sep 2;5:13660. doi: 10.1038/srep13660.

7.

Activating Mutations in PIK3CA Lead to Widespread Modulation of the Tyrosine Phosphoproteome.

Zahari MS, Wu X, Blair BG, Pinto SM, Nirujogi RS, Jelinek CA, Malhotra R, Kim MS, Park BH, Pandey A.

J Proteome Res. 2015 Sep 4;14(9):3882-3891. doi: 10.1021/acs.jproteome.5b00302. Epub 2015 Aug 20.

8.

A breast cancer cell microarray (CMA) as a rapid method to characterize candidate biomarkers.

Wu X, Zahari MS, Renuse S, Jacob HK, Sakamuri S, Singal M, Gabrielson E, Sukumar S, Pandey A.

Cancer Biol Ther. 2014;15(12):1593-9. doi: 10.4161/15384047.2014.961886.

9.

A phosphoproteomic screen demonstrates differential dependence on HER3 for MAP kinase pathway activation by distinct PIK3CA mutations.

Blair BG, Wu X, Zahari MS, Mohseni M, Cidado J, Wong HY, Beaver JA, Cochran RL, Zabransky DJ, Croessmann S, Chu D, Toro PV, Cravero K, Pandey A, Park BH.

Proteomics. 2015 Jan;15(2-3):318-26. doi: 10.1002/pmic.201400342. Epub 2014 Dec 28.

10.

Activation of diverse signalling pathways by oncogenic PIK3CA mutations.

Wu X, Renuse S, Sahasrabuddhe NA, Zahari MS, Chaerkady R, Kim MS, Nirujogi RS, Mohseni M, Kumar P, Raju R, Zhong J, Yang J, Neiswinger J, Jeong JS, Newman R, Powers MA, Somani BL, Gabrielson E, Sukumar S, Stearns V, Qian J, Zhu H, Vogelstein B, Park BH, Pandey A.

Nat Commun. 2014 Sep 23;5:4961. doi: 10.1038/ncomms5961.

11.

A draft map of the human proteome.

Kim MS, Pinto SM, Getnet D, Nirujogi RS, Manda SS, Chaerkady R, Madugundu AK, Kelkar DS, Isserlin R, Jain S, Thomas JK, Muthusamy B, Leal-Rojas P, Kumar P, Sahasrabuddhe NA, Balakrishnan L, Advani J, George B, Renuse S, Selvan LD, Patil AH, Nanjappa V, Radhakrishnan A, Prasad S, Subbannayya T, Raju R, Kumar M, Sreenivasamurthy SK, Marimuthu A, Sathe GJ, Chavan S, Datta KK, Subbannayya Y, Sahu A, Yelamanchi SD, Jayaram S, Rajagopalan P, Sharma J, Murthy KR, Syed N, Goel R, Khan AA, Ahmad S, Dey G, Mudgal K, Chatterjee A, Huang TC, Zhong J, Wu X, Shaw PG, Freed D, Zahari MS, Mukherjee KK, Shankar S, Mahadevan A, Lam H, Mitchell CJ, Shankar SK, Satishchandra P, Schroeder JT, Sirdeshmukh R, Maitra A, Leach SD, Drake CG, Halushka MK, Prasad TS, Hruban RH, Kerr CL, Bader GD, Iacobuzio-Donahue CA, Gowda H, Pandey A.

Nature. 2014 May 29;509(7502):575-81. doi: 10.1038/nature13302.

12.

Colour removal from landfill leachate by coagulation and flocculation processes.

Aziz HA, Alias S, Adlan MN, Faridah, Asaari AH, Zahari MS.

Bioresour Technol. 2007 Jan;98(1):218-20. Epub 2006 Jan 4.

PMID:
16386895
13.

Removal of ammoniacal nitrogen (N-NH3) from municipal solid waste leachate by using activated carbon and limestone.

Aziz HA, Adlan MN, Zahari MS, Alias S.

Waste Manag Res. 2004 Oct;22(5):371-5.

PMID:
15560441

Supplemental Content

Loading ...
Support Center