Send to

Choose Destination
Sci Adv. 2017 Nov 1;3(11):e1700982. doi: 10.1126/sciadv.1700982. eCollection 2017 Nov.

Laboratory unraveling of matter accretion in young stars.

Author information

Institute of Applied Physics, 46 Ulyanov Street, 603950 Nizhny Novgorod, Russia.
LULI (Laboratoire pour l'Utilisation des Lasers Intenses)-CNRS, École Polytechnique; Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Université Paris-Saclay; Sorbonne Universités, Universite Pierre et Marie Curie (UPMC) Paris 06, F-91128 Palaiseau cedex, France.
INAF (Istituto Nazionale di Astrofisica)-Osservatorio Astronomico di Palermo, Palermo, Italy.
Dipartimento di Fisica e Chimica, Università di Palermo, Palermo, Italy.
Sorbonne Universités, UPMC Paris 06, Observatoire de Paris, PSL (Paris Sciences et Lettre) Research University, CNRS, UMR 8112, LERMA (Laboratoire d'Etudes du Rayonnement et de la Matière en Astrophysique), F-75005 Paris, France.
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow 115409, Russia.
Joint Institute for High Temperatures, RAS (Russian Academy of Sciences), Moscow 125412, Russia.
Lawrence Livermore National Laboratory, Livermore, CA 94551, USA.
LNCMI (Laboratoire National des Champs Magnétiques Intenses), UPR 3228, CNRS-UGA-UPS-INSA, Toulouse 31400, France.
Institut für Laser- und Plasmaphysik, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany.
Centre for Plasma Physics, Queen's University of Belfast, Belfast BT7 1NN, UK.
GSI (Gesellschaft für Schwerionenforschung) Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany.
INRS-EMT (Institut National de la Recherche Scientifique, Énergie, Matériaux et Télécommunication), Varennes, Québec, Canada.
CEA, DAM, DIF (Commissariat à l'Energie Atomique Energie Atomique, Direction des Applications Militaires Île de France), 91297 Arpajon, France.
Departamento de Fisica de la Universidad de Las Palmas de Gran Canaria, E-35017 Las Palmas de Gran Canaria, Spain.


Accretion dynamics in the formation of young stars is still a matter of debate because of limitations in observations and modeling. Through scaled laboratory experiments of collimated plasma accretion onto a solid in the presence of a magnetic field, we open a first window on this phenomenon by tracking, with spatial and temporal resolution, the dynamics of the system and simultaneously measuring multiband emissions. We observe in these experiments that matter, upon impact, is ejected laterally from the solid surface and then refocused by the magnetic field toward the incoming stream. This ejected matter forms a plasma shell that envelops the shocked core, reducing escaped x-ray emission. This finding demonstrates one possible structure reconciling current discrepancies between mass accretion rates derived from x-ray and optical observations, respectively.

Supplemental Content

Full text links

Icon for PubMed Central
Loading ...
Support Center