Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 22

1.

Macrophage-Derived IL1β and TNFα Regulate Arginine Metabolism in Neuroblastoma.

Fultang L, Gamble LD, Gneo L, Berry AM, Egan SA, De Bie F, Yogev O, Eden GL, Booth S, Brownhill S, Vardon A, McConville CM, Cheng PN, Norris MD, Etchevers HC, Murray J, Ziegler DS, Chesler L, Schmidt R, Burchill SA, Haber M, De Santo C, Mussai F.

Cancer Res. 2019 Feb 1;79(3):611-624. doi: 10.1158/0008-5472.CAN-18-2139. Epub 2018 Dec 13.

PMID:
30545920
2.

Temporal profiling of redox-dependent heterogeneity in single cells.

Radzinski M, Fassler R, Yogev O, Breuer W, Shai N, Gutin J, Ilyas S, Geffen Y, Tsytkin-Kirschenzweig S, Nahmias Y, Ravid T, Friedman N, Schuldiner M, Reichmann D.

Elife. 2018 Jun 5;7. pii: e37623. doi: 10.7554/eLife.37623.

3.

Herpesviruses shape tumour microenvironment through exosomal transfer of viral microRNAs.

Yogev O, Henderson S, Hayes MJ, Marelli SS, Ofir-Birin Y, Regev-Rudzki N, Herrero J, Enver T.

PLoS Pathog. 2017 Aug 24;13(8):e1006524. doi: 10.1371/journal.ppat.1006524. eCollection 2017 Aug.

4.

A Role of Metastable Regions and Their Connectivity in the Inactivation of a Redox-Regulated Chaperone and Its Inter-Chaperone Crosstalk.

Rimon O, Suss O, Goldenberg M, Fassler R, Yogev O, Amartely H, Propper G, Friedler A, Reichmann D.

Antioxid Redox Signal. 2017 Nov 20;27(15):1252-1267. doi: 10.1089/ars.2016.6900. Epub 2017 Apr 10.

PMID:
28394178
5.

p53 Loss in MYC-Driven Neuroblastoma Leads to Metabolic Adaptations Supporting Radioresistance.

Yogev O, Barker K, Sikka A, Almeida GS, Hallsworth A, Smith LM, Jamin Y, Ruddle R, Koers A, Webber HT, Raynaud FI, Popov S, Jones C, Petrie K, Robinson SP, Keun HC, Chesler L.

Cancer Res. 2016 May 15;76(10):3025-35. doi: 10.1158/0008-5472.CAN-15-1939. Epub 2016 Mar 29.

6.

Kaposi's sarcoma herpesvirus microRNAs induce metabolic transformation of infected cells.

Yogev O, Lagos D, Enver T, Boshoff C.

PLoS Pathog. 2014 Sep 25;10(9):e1004400. doi: 10.1371/journal.ppat.1004400. eCollection 2014 Sep.

7.

eIF4EBP3L acts as a gatekeeper of TORC1 in activity-dependent muscle growth by specifically regulating Mef2ca translational initiation.

Yogev O, Williams VC, Hinits Y, Hughes SM.

PLoS Biol. 2013 Oct;11(10):e1001679. doi: 10.1371/journal.pbio.1001679. Epub 2013 Oct 15.

8.

Redefining KSHV latency.

Yogev O, Boshoff C.

Cell Host Microbe. 2013 Apr 17;13(4):373-4. doi: 10.1016/j.chom.2013.04.003.

9.

Evolving dual targeting of a prokaryotic protein in yeast.

Burak E, Yogev O, Sheffer S, Schueler-Furman O, Pines O.

Mol Biol Evol. 2013 Jul;30(7):1563-73. doi: 10.1093/molbev/mst039. Epub 2013 Mar 5.

PMID:
23462316
10.

Characterization of Arabidopsis NEET reveals an ancient role for NEET proteins in iron metabolism.

Nechushtai R, Conlan AR, Harir Y, Song L, Yogev O, Eisenberg-Domovich Y, Livnah O, Michaeli D, Rosen R, Ma V, Luo Y, Zuris JA, Paddock ML, Cabantchik ZI, Jennings PA, Mittler R.

Plant Cell. 2012 May;24(5):2139-54. doi: 10.1105/tpc.112.097634. Epub 2012 May 4.

11.

Noncoding RNAs and cancer.

Yogev O, Lagos D.

Silence. 2011 Sep 29;2(1):6. doi: 10.1186/1758-907X-2-6.

12.

Fumarase: a paradigm of dual targeting and dual localized functions.

Yogev O, Naamati A, Pines O.

FEBS J. 2011 Nov;278(22):4230-42. doi: 10.1111/j.1742-4658.2011.08359.x. Epub 2011 Oct 24. Review.

13.

Metalloprotease type III effectors that specifically cleave JNK and NF-κB.

Baruch K, Gur-Arie L, Nadler C, Koby S, Yerushalmi G, Ben-Neriah Y, Yogev O, Shaulian E, Guttman C, Zarivach R, Rosenshine I.

EMBO J. 2011 Jan 5;30(1):221-31. doi: 10.1038/emboj.2010.297. Epub 2010 Nov 26.

14.

Dual targeting of mitochondrial proteins: mechanism, regulation and function.

Yogev O, Pines O.

Biochim Biophys Acta. 2011 Mar;1808(3):1012-20. doi: 10.1016/j.bbamem.2010.07.004. Epub 2010 Jul 15.

15.

Jun proteins inhibit autophagy and induce cell death.

Yogev O, Shaulian E.

Autophagy. 2010 May;6(4):566-7. doi: 10.4161/auto.6.4.11950. Epub 2010 May 16.

PMID:
20404571
16.

Fumarase: a mitochondrial metabolic enzyme and a cytosolic/nuclear component of the DNA damage response.

Yogev O, Yogev O, Singer E, Shaulian E, Goldberg M, Fox TD, Pines O.

PLoS Biol. 2010 Mar 9;8(3):e1000328. doi: 10.1371/journal.pbio.1000328.

17.

Jun proteins are starvation-regulated inhibitors of autophagy.

Yogev O, Goldberg R, Anzi S, Yogev O, Shaulian E.

Cancer Res. 2010 Mar 15;70(6):2318-27. doi: 10.1158/0008-5472.CAN-09-3408. Epub 2010 Mar 2.

18.

The mitochondrial targeting sequence tilts the balance between mitochondrial and cytosolic dual localization.

Regev-Rudzki N, Yogev O, Pines O.

J Cell Sci. 2008 Jul 15;121(Pt 14):2423-31. doi: 10.1242/jcs.029207. Epub 2008 Jun 24.

19.

DNA damage-dependent translocation of B23 and p19 ARF is regulated by the Jun N-terminal kinase pathway.

Yogev O, Saadon K, Anzi S, Inoue K, Shaulian E.

Cancer Res. 2008 Mar 1;68(5):1398-406. doi: 10.1158/0008-5472.CAN-07-2865.

20.

Translation-coupled translocation of yeast fumarase into mitochondria in vivo.

Yogev O, Karniely S, Pines O.

J Biol Chem. 2007 Oct 5;282(40):29222-9. Epub 2007 Jul 30.

21.

Induction of transcriptionally active Jun proteins regulates drug-induced senescence.

Yogev O, Anzi S, Inoue K, Shaulian E.

J Biol Chem. 2006 Nov 10;281(45):34475-83. Epub 2006 Sep 11.

22.

Supplemental Content

Support Center