Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 87

1.

Quantitative in vivo imaging of neuronal glucose concentrations with a genetically encoded fluorescence lifetime sensor.

Díaz-García CM, Lahmann C, Martínez-François JR, Li B, Koveal D, Nathwani N, Rahman M, Keller JP, Marvin JS, Looger LL, Yellen G.

J Neurosci Res. 2019 Aug;97(8):946-960. doi: 10.1002/jnr.24433. Epub 2019 May 20.

PMID:
31106909
2.

Neurons rely on glucose rather than astrocytic lactate during stimulation.

Díaz-García CM, Yellen G.

J Neurosci Res. 2019 Aug;97(8):883-889. doi: 10.1002/jnr.24374. Epub 2018 Dec 21. Review.

PMID:
30575090
3.

Fueling thought: Management of glycolysis and oxidative phosphorylation in neuronal metabolism.

Yellen G.

J Cell Biol. 2018 Jul 2;217(7):2235-2246. doi: 10.1083/jcb.201803152. Epub 2018 May 11. Review.

4.

BAD and KATP channels regulate neuron excitability and epileptiform activity.

Martínez-François JR, Fernández-Agüera MC, Nathwani N, Lahmann C, Burnham VL, Danial NN, Yellen G.

Elife. 2018 Jan 25;7. pii: e32721. doi: 10.7554/eLife.32721.

5.

Akt regulation of glycolysis mediates bioenergetic stability in epithelial cells.

Hung YP, Teragawa C, Kosaisawe N, Gillies TE, Pargett M, Minguet M, Distor K, Rocha-Gregg BL, Coloff JL, Keibler MA, Stephanopoulos G, Yellen G, Brugge JS, Albeck JG.

Elife. 2017 Dec 14;6. pii: e27293. doi: 10.7554/eLife.27293.

6.

BAD knockout provides metabolic seizure resistance in a genetic model of epilepsy with sudden unexplained death in epilepsy.

Foley J, Burnham V, Tedoldi M, Danial NN, Yellen G.

Epilepsia. 2018 Jan;59(1):e1-e4. doi: 10.1111/epi.13960. Epub 2017 Nov 23.

7.

Live cell imaging of cytosolic NADH/NAD+ ratio in hepatocytes and liver slices.

Masia R, McCarty WJ, Lahmann C, Luther J, Chung RT, Yarmush ML, Yellen G.

Am J Physiol Gastrointest Liver Physiol. 2018 Jan 1;314(1):G97-G108. doi: 10.1152/ajpgi.00093.2017. Epub 2017 Oct 12.

8.

Neuronal Stimulation Triggers Neuronal Glycolysis and Not Lactate Uptake.

Díaz-García CM, Mongeon R, Lahmann C, Koveal D, Zucker H, Yellen G.

Cell Metab. 2017 Aug 1;26(2):361-374.e4. doi: 10.1016/j.cmet.2017.06.021.

9.

The leak channel NALCN controls tonic firing and glycolytic sensitivity of substantia nigra pars reticulata neurons.

Lutas A, Lahmann C, Soumillon M, Yellen G.

Elife. 2016 May 13;5. pii: e15271. doi: 10.7554/eLife.15271.

10.

Corrigendum: A PKA activity sensor for quantitative analysis of endogenous GPCR signaling via 2-photon FRET-FLIM imaging.

Chen Y, Saulnier JL, Yellen G, Sabatini BL.

Front Pharmacol. 2016 Feb 25;7:46. doi: 10.3389/fphar.2016.00046. eCollection 2016.

11.

Cytosolic NADH-NAD(+) Redox Visualized in Brain Slices by Two-Photon Fluorescence Lifetime Biosensor Imaging.

Mongeon R, Venkatachalam V, Yellen G.

Antioxid Redox Signal. 2016 Oct 1;25(10):553-63. doi: 10.1089/ars.2015.6593. Epub 2016 Mar 18.

12.

Variants in KCNJ11 and BAD do not predict response to ketogenic dietary therapies for epilepsy.

Schoeler NE, Leu C, White J, Plagnol V, Ellard S, Matarin M, Yellen G, Thiele EA, Mackay M, McMahon JM, Scheffer IE, Sander JW, Cross JH, Sisodiya SM.

Epilepsy Res. 2015 Dec;118:22-8. doi: 10.1016/j.eplepsyres.2015.10.003. Epub 2015 Oct 24.

13.

Quantitative two-photon imaging of fluorescent biosensors.

Yellen G, Mongeon R.

Curr Opin Chem Biol. 2015 Aug;27:24-30. doi: 10.1016/j.cbpa.2015.05.024. Epub 2015 Jun 12. Review.

14.

The inward rectifier potassium channel Kir2.1 is expressed in mouse neutrophils from bone marrow and liver.

Masia R, Krause DS, Yellen G.

Am J Physiol Cell Physiol. 2015 Feb 1;308(3):C264-76. doi: 10.1152/ajpcell.00176.2014. Epub 2014 Dec 3.

15.

Metabolism regulates the spontaneous firing of substantia nigra pars reticulata neurons via KATP and nonselective cation channels.

Lutas A, Birnbaumer L, Yellen G.

J Neurosci. 2014 Dec 3;34(49):16336-47. doi: 10.1523/JNEUROSCI.1357-14.2014.

16.

Imaging changes in the cytosolic ATP-to-ADP ratio.

Tantama M, Yellen G.

Methods Enzymol. 2014;547:355-71. doi: 10.1016/B978-0-12-801415-8.00017-5.

17.

Quantitative determinants of aerobic glycolysis identify flux through the enzyme GAPDH as a limiting step.

Shestov AA, Liu X, Ser Z, Cluntun AA, Hung YP, Huang L, Kim D, Le A, Yellen G, Albeck JG, Locasale JW.

Elife. 2014 Jul 9;3. doi: 10.7554/eLife.03342.

18.

A PKA activity sensor for quantitative analysis of endogenous GPCR signaling via 2-photon FRET-FLIM imaging.

Chen Y, Saulnier JL, Yellen G, Sabatini BL.

Front Pharmacol. 2014 Apr 2;5:56. doi: 10.3389/fphar.2014.00056. eCollection 2014. Erratum in: Front Pharmacol. 2016;7:46.

19.

Imaging energy status in live cells with a fluorescent biosensor of the intracellular ATP-to-ADP ratio.

Tantama M, Martínez-François JR, Mongeon R, Yellen G.

Nat Commun. 2013;4:2550. doi: 10.1038/ncomms3550.

20.

Live-cell imaging of cytosolic NADH-NAD+ redox state using a genetically encoded fluorescent biosensor.

Hung YP, Yellen G.

Methods Mol Biol. 2014;1071:83-95. doi: 10.1007/978-1-62703-622-1_7.

21.

The ketogenic diet: metabolic influences on brain excitability and epilepsy.

Lutas A, Yellen G.

Trends Neurosci. 2013 Jan;36(1):32-40. doi: 10.1016/j.tins.2012.11.005. Epub 2012 Dec 8. Review.

22.

Charge movement in gating-locked HCN channels reveals weak coupling of voltage sensors and gate.

Ryu S, Yellen G.

J Gen Physiol. 2012 Nov;140(5):469-79. doi: 10.1085/jgp.201210850. Epub 2012 Oct 15.

23.

Structural changes during HCN channel gating defined by high affinity metal bridges.

Kwan DC, Prole DL, Yellen G.

J Gen Physiol. 2012 Sep;140(3):279-91. doi: 10.1085/jgp.201210838.

24.

BAD-dependent regulation of fuel metabolism and K(ATP) channel activity confers resistance to epileptic seizures.

Giménez-Cassina A, Martínez-François JR, Fisher JK, Szlyk B, Polak K, Wiwczar J, Tanner GR, Lutas A, Yellen G, Danial NN.

Neuron. 2012 May 24;74(4):719-30. doi: 10.1016/j.neuron.2012.03.032.

25.

Optogenetic reporters: Fluorescent protein-based genetically encoded indicators of signaling and metabolism in the brain.

Tantama M, Hung YP, Yellen G.

Prog Brain Res. 2012;196:235-63. doi: 10.1016/B978-0-444-59426-6.00012-4. Review.

26.

Imaging cytosolic NADH-NAD(+) redox state with a genetically encoded fluorescent biosensor.

Hung YP, Albeck JG, Tantama M, Yellen G.

Cell Metab. 2011 Oct 5;14(4):545-54. doi: 10.1016/j.cmet.2011.08.012.

27.

Single K ATP channel opening in response to action potential firing in mouse dentate granule neurons.

Tanner GR, Lutas A, Martínez-François JR, Yellen G.

J Neurosci. 2011 Jun 8;31(23):8689-96. doi: 10.1523/JNEUROSCI.5951-10.2011.

28.

Imaging intracellular pH in live cells with a genetically encoded red fluorescent protein sensor.

Tantama M, Hung YP, Yellen G.

J Am Chem Soc. 2011 Jul 6;133(26):10034-7. doi: 10.1021/ja202902d. Epub 2011 Jun 9.

29.

A genetically encoded fluorescent reporter of ATP:ADP ratio.

Berg J, Hung YP, Yellen G.

Nat Methods. 2009 Feb;6(2):161-6. doi: 10.1038/nmeth.1288. Epub 2009 Jan 4.

30.

Ketone bodies, glycolysis, and KATP channels in the mechanism of the ketogenic diet.

Yellen G.

Epilepsia. 2008 Nov;49 Suppl 8:80-2. doi: 10.1111/j.1528-1167.2008.01843.x. Review.

31.
32.

Cooperative gating between single HCN pacemaker channels.

Dekker JP, Yellen G.

J Gen Physiol. 2006 Nov;128(5):561-7. Epub 2006 Oct 16.

33.

Reversal of HCN channel voltage dependence via bridging of the S4-S5 linker and Post-S6.

Prole DL, Yellen G.

J Gen Physiol. 2006 Sep;128(3):273-82. Epub 2006 Aug 14.

34.
35.

Status of the intracellular gate in the activated-not-open state of shaker K+ channels.

del Camino D, Kanevsky M, Yellen G.

J Gen Physiol. 2005 Nov;126(5):419-28.

36.

Intracellular gate opening in Shaker K+ channels defined by high-affinity metal bridges.

Webster SM, Del Camino D, Dekker JP, Yellen G.

Nature. 2004 Apr 22;428(6985):864-8.

PMID:
15103379
37.

Inactivation in HCN channels results from reclosure of the activation gate: desensitization to voltage.

Shin KS, Maertens C, Proenza C, Rothberg BS, Yellen G.

Neuron. 2004 Mar 4;41(5):737-44.

38.

A perturbation-based method for calculating explicit likelihood of evolutionary co-variance in multiple sequence alignments.

Dekker JP, Fodor A, Aldrich RW, Yellen G.

Bioinformatics. 2004 Jul 10;20(10):1565-72. Epub 2004 Feb 12.

PMID:
14962924
39.

Movements near the gate of a hyperpolarization-activated cation channel.

Rothberg BS, Shin KS, Yellen G.

J Gen Physiol. 2003 Nov;122(5):501-10. Epub 2003 Oct 13.

40.

The voltage-gated potassium channels and their relatives.

Yellen G.

Nature. 2002 Sep 5;419(6902):35-42. Review.

PMID:
12214225
41.

Fast and slow voltage sensor movements in HERG potassium channels.

Smith PL, Yellen G.

J Gen Physiol. 2002 Mar;119(3):275-93.

42.

Voltage-controlled gating at the intracellular entrance to a hyperpolarization-activated cation channel.

Rothberg BS, Shin KS, Phale PS, Yellen G.

J Gen Physiol. 2002 Jan;119(1):83-91.

43.

Keeping K+ completely comfortable.

Yellen G.

Nat Struct Biol. 2001 Dec;8(12):1011-3. No abstract available.

PMID:
11723466
44.
45.

Dimers among friends: ion channel regulation by dimerization of tail domains.

Yellen G.

Trends Pharmacol Sci. 2001 Sep;22(9):439-41. No abstract available.

PMID:
11543856
47.

Blocker protection in the pore of a voltage-gated K+ channel and its structural implications.

del Camino D, Holmgren M, Liu Y, Yellen G.

Nature. 2000 Jan 20;403(6767):321-5.

PMID:
10659852
48.

The bacterial K+ channel structure and its implications for neuronal channels.

Yellen G.

Curr Opin Neurobiol. 1999 Jun;9(3):267-73. Review.

PMID:
10395571
49.

The moving parts of voltage-gated ion channels.

Yellen G.

Q Rev Biophys. 1998 Aug;31(3):239-95. Review. No abstract available.

PMID:
10384687
50.

Supplemental Content

Loading ...
Support Center