Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 50

1.

Unique Microbial Catabolic Pathway for the Human Core N-Glycan Constituent Fucosyl-α-1,6-N-Acetylglucosamine-Asparagine.

Becerra JE, Rodríguez-Díaz J, Gozalbo-Rovira R, Palomino-Schätzlein M, Zúñiga M, Monedero V, Yebra MJ.

mBio. 2020 Jan 14;11(1). pii: e02804-19. doi: 10.1128/mBio.02804-19.

2.

Impact of a Plant Sterol- and Galactooligosaccharide-Enriched Beverage on Colonic Metabolism and Gut Microbiota Composition Using an In Vitro Dynamic Model.

Blanco-Morales V, Garcia-Llatas G, Yebra MJ, Sentandreu V, Lagarda MJ, Alegría A.

J Agric Food Chem. 2020 Feb 19;68(7):1884-1895. doi: 10.1021/acs.jafc.9b04796. Epub 2019 Sep 26.

PMID:
31523960
3.

Unraveling the role of the secretor antigen in human rotavirus attachment to histo-blood group antigens.

Gozalbo-Rovira R, Ciges-Tomas JR, Vila-Vicent S, Buesa J, Santiso-Bellón C, Monedero V, Yebra MJ, Marina A, Rodríguez-Díaz J.

PLoS Pathog. 2019 Jun 21;15(6):e1007865. doi: 10.1371/journal.ppat.1007865. eCollection 2019 Jun.

4.

Utilization of Host-Derived Glycans by Intestinal Lactobacillus and Bifidobacterium Species.

Zúñiga M, Monedero V, Yebra MJ.

Front Microbiol. 2018 Aug 17;9:1917. doi: 10.3389/fmicb.2018.01917. eCollection 2018. Review.

5.

The lactose operon from Lactobacillus casei is involved in the transport and metabolism of the human milk oligosaccharide core-2 N-acetyllactosamine.

Bidart GN, Rodríguez-Díaz J, Pérez-Martínez G, Yebra MJ.

Sci Rep. 2018 May 8;8(1):7152. doi: 10.1038/s41598-018-25660-w.

6.

Human milk and mucosal lacto- and galacto-N-biose synthesis by transgalactosylation and their prebiotic potential in Lactobacillus species.

Bidart GN, Rodríguez-Díaz J, Palomino-Schätzlein M, Monedero V, Yebra MJ.

Appl Microbiol Biotechnol. 2017 Jan;101(1):205-215. doi: 10.1007/s00253-016-7882-0. Epub 2016 Oct 7.

PMID:
27714445
7.

The Extracellular Wall-Bound β-N-Acetylglucosaminidase from Lactobacillus casei Is Involved in the Metabolism of the Human Milk Oligosaccharide Lacto-N-Triose.

Bidart GN, Rodríguez-Díaz J, Yebra MJ.

Appl Environ Microbiol. 2015 Nov 6;82(2):570-7. doi: 10.1128/AEM.02888-15. Print 2016 Jan 15.

8.

Expression of bifidobacterial phytases in Lactobacillus casei and their application in a food model of whole-grain sourdough bread.

García-Mantrana I, Yebra MJ, Haros M, Monedero V.

Int J Food Microbiol. 2016 Jan 4;216:18-24. doi: 10.1016/j.ijfoodmicro.2015.09.003. Epub 2015 Sep 8.

PMID:
26384212
9.

Preparative scale purification of fucosyl-N-acetylglucosamine disaccharides and their evaluation as potential prebiotics and antiadhesins.

Becerra JE, Coll-Marqués JM, Rodríguez-Díaz J, Monedero V, Yebra MJ.

Appl Microbiol Biotechnol. 2015 Sep;99(17):7165-76. doi: 10.1007/s00253-015-6666-2. Epub 2015 May 16.

PMID:
25977209
10.

An L-Fucose Operon in the Probiotic Lactobacillus rhamnosus GG Is Involved in Adaptation to Gastrointestinal Conditions.

Becerra JE, Yebra MJ, Monedero V.

Appl Environ Microbiol. 2015 Jun;81(11):3880-8. doi: 10.1128/AEM.00260-15. Epub 2015 Mar 27.

11.

Commensal-pathogen interactions in the intestinal tract: lactobacilli promote infection with, and are promoted by, helminth parasites.

Reynolds LA, Smith KA, Filbey KJ, Harcus Y, Hewitson JP, Redpath SA, Valdez Y, Yebra MJ, Finlay BB, Maizels RM.

Gut Microbes. 2014 Jul 1;5(4):522-32. doi: 10.4161/gmic.32155. Epub 2014 Aug 5.

12.

A unique gene cluster for the utilization of the mucosal and human milk-associated glycans galacto-N-biose and lacto-N-biose in Lactobacillus casei.

Bidart GN, Rodríguez-Díaz J, Monedero V, Yebra MJ.

Mol Microbiol. 2014 Aug;93(3):521-38. doi: 10.1111/mmi.12678. Epub 2014 Jul 3.

13.

Noroviral p-particles as an in vitro model to assess the interactions of noroviruses with probiotics.

Rubio-del-Campo A, Coll-Marqués JM, Yebra MJ, Buesa J, Pérez-Martínez G, Monedero V, Rodríguez-Díaz J.

PLoS One. 2014 Feb 21;9(2):e89586. doi: 10.1371/journal.pone.0089586. eCollection 2014.

14.

Utilization of D-ribitol by Lactobacillus casei BL23 requires a mannose-type phosphotransferase system and three catabolic enzymes.

Bourand A, Yebra MJ, Boël G, Mazé A, Deutscher J.

J Bacteriol. 2013 Jun;195(11):2652-61. doi: 10.1128/JB.02276-12. Epub 2013 Apr 5.

15.

Synthesis of fucosyl-N-acetylglucosamine disaccharides by transfucosylation using α-L-fucosidases from Lactobacillus casei.

Rodríguez-Díaz J, Carbajo RJ, Pineda-Lucena A, Monedero V, Yebra MJ.

Appl Environ Microbiol. 2013 Jun;79(12):3847-50. doi: 10.1128/AEM.00229-13. Epub 2013 Mar 29.

16.

Regulatory insights into the production of UDP-N-acetylglucosamine by Lactobacillus casei.

Rodríguez-Díaz J, Rubio-Del-Campo A, Yebra MJ.

Bioengineered. 2012 Nov-Dec;3(6):339-42. doi: 10.4161/bioe.21271. Epub 2012 Jul 24.

17.

Novel phytases from Bifidobacterium pseudocatenulatum ATCC 27919 and Bifidobacterium longum subsp. infantis ATCC 15697.

Tamayo-Ramos JA, Sanz-Penella JM, Yebra MJ, Monedero V, Haros M.

Appl Environ Microbiol. 2012 Jul;78(14):5013-5. doi: 10.1128/AEM.00782-12. Epub 2012 May 11.

18.

Lactobacillus casei ferments the N-Acetylglucosamine moiety of fucosyl-α-1,3-N-acetylglucosamine and excretes L-fucose.

Rodríguez-Díaz J, Rubio-del-Campo A, Yebra MJ.

Appl Environ Microbiol. 2012 Jul;78(13):4613-9. doi: 10.1128/AEM.00474-12. Epub 2012 Apr 27.

19.

Metabolic engineering of Lactobacillus casei for production of UDP-N-acetylglucosamine.

Rodríguez-Díaz J, Rubio-del-Campo A, Yebra MJ.

Biotechnol Bioeng. 2012 Jul;109(7):1704-12. doi: 10.1002/bit.24475. Epub 2012 Mar 2.

PMID:
22383248
20.

Enhanced UDP-glucose and UDP-galactose by homologous overexpression of UDP-glucose pyrophosphorylase in Lactobacillus casei.

Rodríguez-Díaz J, Yebra MJ.

J Biotechnol. 2011 Jul 20;154(4):212-5. doi: 10.1016/j.jbiotec.2011.05.015. Epub 2011 Jun 1.

PMID:
21663774
21.

Role of α-phosphoglucomutase and phosphoglucose isomerase activities at the branching point between sugar catabolism and anabolism in Lactobacillus casei.

Sanfélix-Haywood N, Coll-Marqués JM, Yebra MJ.

J Appl Microbiol. 2011 Aug;111(2):433-42. doi: 10.1111/j.1365-2672.2011.05045.x. Epub 2011 May 24.

22.

Utilization of natural fucosylated oligosaccharides by three novel alpha-L-fucosidases from a probiotic Lactobacillus casei strain.

Rodríguez-Díaz J, Monedero V, Yebra MJ.

Appl Environ Microbiol. 2011 Jan;77(2):703-5. doi: 10.1128/AEM.01906-10. Epub 2010 Nov 19.

23.

Characterization of a novel Lactobacillus species closely related to Lactobacillus johnsonii using a combination of molecular and comparative genomics methods.

Sarmiento-Rubiano LA, Berger B, Moine D, Zúñiga M, Pérez-Martínez G, Yebra MJ.

BMC Genomics. 2010 Sep 17;11:504. doi: 10.1186/1471-2164-11-504.

24.

Complete genome sequence of the probiotic Lactobacillus casei strain BL23.

Mazé A, Boël G, Zúñiga M, Bourand A, Loux V, Yebra MJ, Monedero V, Correia K, Jacques N, Beaufils S, Poncet S, Joyet P, Milohanic E, Casarégola S, Auffray Y, Pérez-Martínez G, Gibrat JF, Zagorec M, Francke C, Hartke A, Deutscher J.

J Bacteriol. 2010 May;192(10):2647-8. doi: 10.1128/JB.00076-10. Epub 2010 Mar 26.

25.

Perspectives of engineering lactic acid bacteria for biotechnological polyol production.

Monedero V, Pérez-Martínez G, Yebra MJ.

Appl Microbiol Biotechnol. 2010 Apr;86(4):1003-15. doi: 10.1007/s00253-010-2494-6. Epub 2010 Feb 24. Review.

PMID:
20180114
26.

Sorbitol production from lactose by engineered Lactobacillus casei deficient in sorbitol transport system and mannitol-1-phosphate dehydrogenase.

De Boeck R, Sarmiento-Rubiano LA, Nadal I, Monedero V, Pérez-Martínez G, Yebra MJ.

Appl Microbiol Biotechnol. 2010 Feb;85(6):1915-22. doi: 10.1007/s00253-009-2260-9. Epub 2009 Sep 26.

PMID:
19784641
27.

Diacetyl and acetoin production from whey permeate using engineered Lactobacillus casei.

Nadal I, Rico J, Pérez-Martínez G, Yebra MJ, Monedero V.

J Ind Microbiol Biotechnol. 2009 Sep;36(9):1233-7. doi: 10.1007/s10295-009-0617-9. Epub 2009 Jul 16.

PMID:
19609583
28.

Regulation of Lactobacillus casei sorbitol utilization genes requires DNA-binding transcriptional activator GutR and the conserved protein GutM.

Alcántara C, Sarmiento-Rubiano LA, Monedero V, Deutscher J, Pérez-Martínez G, Yebra MJ.

Appl Environ Microbiol. 2008 Sep;74(18):5731-40. doi: 10.1128/AEM.00230-08. Epub 2008 Aug 1.

29.

Analysis of ldh genes in Lactobacillus casei BL23: role on lactic acid production.

Rico J, Yebra MJ, Pérez-Martínez G, Deutscher J, Monedero V.

J Ind Microbiol Biotechnol. 2008 Jun;35(6):579-86. doi: 10.1007/s10295-008-0319-8. Epub 2008 Jan 30.

PMID:
18231816
30.

Maltose transport in Lactobacillus casei and its regulation by inducer exclusion.

Monedero V, Yebra MJ, Poncet S, Deutscher J.

Res Microbiol. 2008 Mar;159(2):94-102. Epub 2007 Nov 4.

PMID:
18096372
31.

Dietary supplementation with sorbitol results in selective enrichment of lactobacilli in rat intestine.

Sarmiento-Rubiano LA, Zúñiga M, Pérez-Martínez G, Yebra MJ.

Res Microbiol. 2007 Oct-Nov;158(8-9):694-701. Epub 2007 Aug 2.

PMID:
17825531
32.

Identification of a gene cluster enabling Lactobacillus casei BL23 to utilize myo-inositol.

Yebra MJ, Zúñiga M, Beaufils S, Pérez-Martínez G, Deutscher J, Monedero V.

Appl Environ Microbiol. 2007 Jun;73(12):3850-8. Epub 2007 Apr 20.

33.

Influence of the carbohydrate source on beta-glucan production and enzyme activities involved in sugar metabolism in Pediococcus parvulus 2.6.

Velasco SE, Yebra MJ, Monedero V, Ibarburu I, Dueñas MT, Irastorza A.

Int J Food Microbiol. 2007 Apr 20;115(3):325-34. Epub 2007 Jan 13.

PMID:
17303279
34.
35.

Horizontal gene transfer in the molecular evolution of mannose PTS transporters.

Zúñiga M, Comas I, Linaje R, Monedero V, Yebra MJ, Esteban CD, Deutscher J, Pérez-Martínez G, González-Candelas F.

Mol Biol Evol. 2005 Aug;22(8):1673-85.

PMID:
16006479
36.
37.
38.

Pleiotropic effects of lactate dehydrogenase inactivation in Lactobacillus casei.

Viana R, Yebra MJ, Galán JL, Monedero V, Pérez-Martínez G.

Res Microbiol. 2005 Jun-Jul;156(5-6):641-9. Epub 2005 Apr 22.

PMID:
15882939
39.

Genetics of L-sorbose transport and metabolism in Lactobacillus casei.

Yebra MJ, Veyrat A, Santos MA, Pérez-Martínez G.

J Bacteriol. 2000 Jan;182(1):155-63.

40.

Expression and secretion of Bacillus polymyxa neopullulanase in Saccharomyces cerevisiae.

Yebra MJ, Blasco A, Sanz P.

FEMS Microbiol Lett. 1999 Jan 1;170(1):41-9.

41.
42.

A cytosine methyltransferase converts 5-methylcytosine in DNA to thymine.

Yebra MJ, Bhagwat AS.

Biochemistry. 1995 Nov 14;34(45):14752-7.

PMID:
7578083
44.

Cloning and characterization of the gene encoding the DsaV methyltransferase.

Gopal J, Yebra MJ, Bhagwat AS.

Gene. 1995 May 19;157(1-2):61-3.

PMID:
7607527
45.

Effect of 5-azacytidine and sinefungin on Streptomyces development.

Fernandez M, Soliveri J, Novella IS, Yebra MJ, Barbés C, Sánchez J.

Gene. 1995 May 19;157(1-2):221-3.

PMID:
7541762
47.

A rapid and sensitive method to measure DNA endonuclease activity.

Yebra MJ, Bhagwat AS.

Nucleic Acids Res. 1993 Dec 11;21(24):5797-8. No abstract available.

48.

The effect of sinefungin and synthetic analogues on RNA and DNA methyltransferases from Streptomyces.

Yebra MJ, Sanchez J, Martin CG, Hardisson C, Barbes C.

J Antibiot (Tokyo). 1991 Oct;44(10):1141-7.

49.
50.

Effects of sinefungin and S-adenosylhomocysteine on DNA and protein methyltransferases from Streptomyces and other bacteria.

Barbés C, Sánchez J, Yebra MJ, Robert-Geró M, Hardisson C.

FEMS Microbiol Lett. 1990 Jun 1;57(3):239-43.

PMID:
2210336

Supplemental Content

Loading ...
Support Center