Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 18

1.

Bi-allelic loss of function variants of TBX6 causes a spectrum of malformation of spine and rib including congenital scoliosis and spondylocostal dysostosis.

Otomo N, Takeda K, Kawai S, Kou I, Guo L, Osawa M, Alev C, Kawakami N, Miyake N, Matsumoto N, Yasuhiko Y, Kotani T, Suzuki T, Uno K, Sudo H, Inami S, Taneichi H, Shigematsu H, Watanabe K, Yonezawa I, Sugawara R, Taniguchi Y, Minami S, Kaneko K, Nakamura M, Matsumoto M, Toguchida J, Watanabe K, Ikegawa S.

J Med Genet. 2019 Sep;56(9):622-628. doi: 10.1136/jmedgenet-2018-105920. Epub 2019 Apr 22.

PMID:
31015262
2.

Exosome-mediated horizontal gene transfer occurs in double-strand break repair during genome editing.

Ono R, Yasuhiko Y, Aisaki KI, Kitajima S, Kanno J, Hirabayashi Y.

Commun Biol. 2019 Feb 8;2:57. doi: 10.1038/s42003-019-0300-2. eCollection 2019.

3.

Response to Lefebvre et al.

Takeda K, Kou I, Kawakami N, Yasuhiko Y, Ogura Y, Imagawa E, Miyake N, Matsumoto N, Sudo H, Kotani T; Japan Early Onset Scoliosis Research Group, Nakamura M, Matsumoto M, Watanabe K, Ikegawa S.

Clin Genet. 2017 Nov;92(5):563-564. doi: 10.1111/cge.13011.

PMID:
28990171
4.

LTRs of Endogenous Retroviruses as a Source of Tbx6 Binding Sites.

Yasuhiko Y, Hirabayashi Y, Ono R.

Front Chem. 2017 Jun 15;5:34. doi: 10.3389/fchem.2017.00034. eCollection 2017.

5.

Compound Heterozygosity for Null Mutations and a Common Hypomorphic Risk Haplotype in TBX6 Causes Congenital Scoliosis.

Takeda K, Kou I, Kawakami N, Iida A, Nakajima M, Ogura Y, Imagawa E, Miyake N, Matsumoto N, Yasuhiko Y, Sudo H, Kotani T; Japan Early Onset Scoliosis Research Group, Nakamura M, Matsumoto M, Watanabe K, Ikegawa S.

Hum Mutat. 2017 Mar;38(3):317-323. doi: 10.1002/humu.23168. Epub 2017 Jan 18.

PMID:
28054739
6.

Metameric pattern of intervertebral disc/vertebral body is generated independently of Mesp2/Ripply-mediated rostro-caudal patterning of somites in the mouse embryo.

Takahashi Y, Yasuhiko Y, Takahashi J, Takada S, Johnson RL, Saga Y, Kanno J.

Dev Biol. 2013 Aug 15;380(2):172-84. doi: 10.1016/j.ydbio.2013.05.020. Epub 2013 May 28.

7.

Functional importance of evolutionally conserved Tbx6 binding sites in the presomitic mesoderm-specific enhancer of Mesp2.

Yasuhiko Y, Kitajima S, Takahashi Y, Oginuma M, Kagiwada H, Kanno J, Saga Y.

Development. 2008 Nov;135(21):3511-9. doi: 10.1242/dev.027144.

8.

Appropriate suppression of Notch signaling by Mesp factors is essential for stripe pattern formation leading to segment boundary formation.

Takahashi Y, Yasuhiko Y, Kitajima S, Kanno J, Saga Y.

Dev Biol. 2007 Apr 15;304(2):593-603. Epub 2007 Jan 9.

9.
10.

Transgenic analysis of the medaka mesp-b enhancer in somitogenesis.

Terasaki H, Murakami R, Yasuhiko Y, Shin-I T, Kohara Y, Saga Y, Takeda H.

Dev Growth Differ. 2006 Apr;48(3):153-68.

PMID:
16573733
11.

Tbx6-mediated Notch signaling controls somite-specific Mesp2 expression.

Yasuhiko Y, Haraguchi S, Kitajima S, Takahashi Y, Kanno J, Saga Y.

Proc Natl Acad Sci U S A. 2006 Mar 7;103(10):3651-6. Epub 2006 Feb 27.

12.

An endoplasmic reticulum stress-specific caspase cascade in apoptosis. Cytochrome c-independent activation of caspase-9 by caspase-12.

Morishima N, Nakanishi K, Takenouchi H, Shibata T, Yasuhiko Y.

J Biol Chem. 2002 Sep 13;277(37):34287-94. Epub 2002 Jul 3.

13.

Calmodulin binds to inv protein: implication for the regulation of inv function.

Yasuhiko Y, Imai F, Ookubo K, Takakuwa Y, Shiokawa K, Yokoyama T.

Dev Growth Differ. 2001 Dec;43(6):671-81.

PMID:
11737147
14.

FZD4S, a splicing variant of frizzled-4, encodes a soluble-type positive regulator of the WNT signaling pathway.

Sagara N, Kirikoshi H, Terasaki H, Yasuhiko Y, Toda G, Shiokawa K, Katoh M.

Biochem Biophys Res Commun. 2001 Apr 6;282(3):750-6.

PMID:
11401527
15.

Isolation of Xenopus frizzled-10A and frizzled-10B genomic clones and their expression in adult tissues and embryos.

Moriwaki J, Kajita E, Kirikoshi H, Koike J, Sagara N, Yasuhiko Y, Saitoh T, Hirai M, Katoh M, Shiokawa K.

Biochem Biophys Res Commun. 2000 Nov 19;278(2):377-84.

PMID:
11097845
16.

Maternal program of apoptosis activated shortly after midblastula transition by overexpression of S-adenosylmethionine decarboxylase in Xenopus early embryos.

Shiokawa K, Kai M, Higo T, Kaito C, Yokoska J, Yasuhiko Y, Kajita E, Nagano M, Yamada Y, Shibata M, Muto T, Shinga J, Hara H, Takayama E, Fukamachi H, Yaoita Y, Igarashi K.

Comp Biochem Physiol B Biochem Mol Biol. 2000 Jun;126(2):149-55. Review.

PMID:
10874162
17.

Overexpression of S-adenosylmethionine decarboxylase (SAMDC) in early Xenopus embryos induces cell dissociation and inhibits transition from the blastula to gastrula stage.

Shibata M, Shinga J, Yasuhiko Y, Kai M, Miura K, Shimogori T, Kashiwagi K, Igarashi K, Shiokawa K.

Int J Dev Biol. 1998 Jul;42(5):675-86.

18.

[Studies on synthetic drugs. II. Syntheses of pyrrolo[1,i-d][1,4]-benzodiazepine derivatives (author's transl)].

Yasuhiko Y, Watanabe M, Yamamura S, Saito S.

Yakugaku Zasshi. 1977 Feb;97(2):135-42. Japanese. No abstract available.

PMID:
558311

Supplemental Content

Loading ...
Support Center