Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 78

1.

Implementation of a loss-of-function system to determine growth and stress-associated mutagenesis in Bacillus subtilis.

Villegas-Negrete N, Robleto EA, Obregón-Herrera A, Yasbin RE, Pedraza-Reyes M.

PLoS One. 2017 Jul 11;12(7):e0179625. doi: 10.1371/journal.pone.0179625. eCollection 2017.

2.

Role of Ribonucleotide Reductase in Bacillus subtilis Stress-Associated Mutagenesis.

Castro-Cerritos KV, Yasbin RE, Robleto EA, Pedraza-Reyes M.

J Bacteriol. 2017 Jan 30;199(4). pii: e00715-16. doi: 10.1128/JB.00715-16. Print 2017 Feb 15.

3.

Role of Base Excision Repair (BER) in Transcription-associated Mutagenesis of Nutritionally Stressed Nongrowing Bacillus subtilis Cell Subpopulations.

Ambriz-Aviña V, Yasbin RE, Robleto EA, Pedraza-Reyes M.

Curr Microbiol. 2016 Nov;73(5):721-726. doi: 10.1007/s00284-016-1122-9. Epub 2016 Aug 16.

4.

Stationary-Phase Mutagenesis in Stressed Bacillus subtilis Cells Operates by Mfd-Dependent Mutagenic Pathways.

Gómez-Marroquín M, Martin HA, Pepper A, Girard ME, Kidman AA, Vallin C, Yasbin RE, Pedraza-Reyes M, Robleto EA.

Genes (Basel). 2016 Jul 5;7(7). pii: E33. doi: 10.3390/genes7070033.

5.

Error-prone processing of apurinic/apyrimidinic (AP) sites by PolX underlies a novel mechanism that promotes adaptive mutagenesis in Bacillus subtilis.

Barajas-Ornelas Rdel C, Ramírez-Guadiana FH, Juárez-Godínez R, Ayala-García VM, Robleto EA, Yasbin RE, Pedraza-Reyes M.

J Bacteriol. 2014 Aug 15;196(16):3012-22. doi: 10.1128/JB.01681-14. Epub 2014 Jun 9.

6.

Transcriptional coupling of DNA repair in sporulating Bacillus subtilis cells.

Ramírez-Guadiana FH, Del Carmen Barajas-Ornelas R, Ayala-García VM, Yasbin RE, Robleto E, Pedraza-Reyes M.

Mol Microbiol. 2013 Dec;90(5):1088-99. doi: 10.1111/mmi.12417. Epub 2013 Oct 25.

7.

Transcriptional de-repression and Mfd are mutagenic in stressed Bacillus subtilis cells.

Martin HA, Pedraza-Reyes M, Yasbin RE, Robleto EA.

J Mol Microbiol Biotechnol. 2011;21(1-2):45-58. doi: 10.1159/000332751. Epub 2012 Jan 13.

8.

Roles of endonuclease V, uracil-DNA glycosylase, and mismatch repair in Bacillus subtilis DNA base-deamination-induced mutagenesis.

López-Olmos K, Hernández MP, Contreras-Garduño JA, Robleto EA, Setlow P, Yasbin RE, Pedraza-Reyes M.

J Bacteriol. 2012 Jan;194(2):243-52. doi: 10.1128/JB.06082-11. Epub 2011 Nov 4.

9.

Mismatch repair modulation of MutY activity drives Bacillus subtilis stationary-phase mutagenesis.

Debora BN, Vidales LE, Ramírez R, Ramírez M, Robleto EA, Yasbin RE, Pedraza-Reyes M.

J Bacteriol. 2011 Jan;193(1):236-45. doi: 10.1128/JB.00940-10. Epub 2010 Oct 22.

10.

Transcription-associated mutation in Bacillus subtilis cells under stress.

Pybus C, Pedraza-Reyes M, Ross CA, Martin H, Ona K, Yasbin RE, Robleto E.

J Bacteriol. 2010 Jul;192(13):3321-8. doi: 10.1128/JB.00354-10. Epub 2010 Apr 30.

11.

Role of the Y-family DNA polymerases YqjH and YqjW in protecting sporulating Bacillus subtilis cells from DNA damage.

Rivas-Castillo AM, Yasbin RE, Robleto E, Nicholson WL, Pedraza-Reyes M.

Curr Microbiol. 2010 Apr;60(4):263-7. doi: 10.1007/s00284-009-9535-3. Epub 2009 Nov 19.

PMID:
19924481
12.

Defects in the error prevention oxidized guanine system potentiate stationary-phase mutagenesis in Bacillus subtilis.

Vidales LE, Cárdenas LC, Robleto E, Yasbin RE, Pedraza-Reyes M.

J Bacteriol. 2009 Jan;191(2):506-13. doi: 10.1128/JB.01210-08. Epub 2008 Nov 14.

13.

Role of the Nfo and ExoA apurinic/apyrimidinic endonucleases in repair of DNA damage during outgrowth of Bacillus subtilis spores.

Ibarra JR, Orozco AD, Rojas JA, López K, Setlow P, Yasbin RE, Pedraza-Reyes M.

J Bacteriol. 2008 Mar;190(6):2031-8. doi: 10.1128/JB.01625-07. Epub 2008 Jan 18.

14.

Novel role of mfd: effects on stationary-phase mutagenesis in Bacillus subtilis.

Ross C, Pybus C, Pedraza-Reyes M, Sung HM, Yasbin RE, Robleto E.

J Bacteriol. 2006 Nov;188(21):7512-20. Epub 2006 Sep 1.

15.

YtkD and MutT protect vegetative cells but not spores of Bacillus subtilis from oxidative stress.

Castellanos-Juárez FX, Alvarez-Alvarez C, Yasbin RE, Setlow B, Setlow P, Pedraza-Reyes M.

J Bacteriol. 2006 Mar;188(6):2285-9.

16.
17.
18.

YqfS from Bacillus subtilis is a spore protein and a new functional member of the type IV apurinic/apyrimidinic-endonuclease family.

Salas-Pacheco JM, Urtiz-Estrada N, Martínez-Cadena G, Yasbin RE, Pedraza-Reyes M.

J Bacteriol. 2003 Sep;185(18):5380-90.

20.
21.
22.
23.

The Bacillus subtilis DinR binding site: redefinition of the consensus sequence.

Winterling KW, Chafin D, Hayes JJ, Sun J, Levine AS, Yasbin RE, Woodgate R.

J Bacteriol. 1998 Apr;180(8):2201-11.

24.
25.

Transfection enhancement in Bacillus subtilis displays features of a novel DNA repair pathway. I: DNA base and nucleolytic specificity.

Radany EH, Malanoski G, Ambulos NP Jr, Friedberg EC, Yasbin RE.

Mutat Res. 1997 Aug;384(2):107-20.

PMID:
9298119
26.

Characterization of DinR, the Bacillus subtilis SOS repressor.

Winterling KW, Levine AS, Yasbin RE, Woodgate R.

J Bacteriol. 1997 Mar;179(5):1698-703.

27.
29.

A genetic and molecular characterization of the recA gene from Staphylococcus aureus.

Bayles KW, Brunskill EW, Iandolo JJ, Hruska LL, Huang S, Pattee PA, Smiley BK, Yasbin RE.

Gene. 1994 Sep 15;147(1):13-20.

PMID:
8088537
31.

Molecular characterization of regulatory elements controlling expression of the Bacillus subtilis recA+ gene.

Cheo DL, Bayles KW, Yasbin RE.

Biochimie. 1992 Jul-Aug;74(7-8):755-62.

PMID:
1391055
32.

Inducible DNA repair and differentiation in Bacillus subtilis: interactions between global regulons.

Yasbin RE, Cheo DL, Bayles KW.

Mol Microbiol. 1992 May;6(10):1263-70. Review.

PMID:
1640829
33.
34.

The SOB system of Bacillus subtilis: a global regulon involved in DNA repair and differentiation.

Yasbin RE, Cheo D, Bayles KW.

Res Microbiol. 1991 Sep-Oct;142(7-8):885-92. Review. No abstract available.

PMID:
1784826
35.
36.
37.

The recE(A)+ gene of B subtilis and its gene product: further characterization of this universal protein.

Yasbin RE, Stranathan M, Bayles KW.

Biochimie. 1991 Feb-Mar;73(2-3):245-50.

PMID:
1909185
38.

The nucleotide sequence of the recE+ gene of Bacillus subtilis.

Stranathan MC, Bayles KW, Yasbin RE.

Nucleic Acids Res. 1990 Jul 25;18(14):4249. No abstract available.

39.
42.
43.

Expression, purification, and characterization of an exo-beta-D-fructosidase of Streptococcus mutans.

Burne RA, Schilling K, Bowen WH, Yasbin RE.

J Bacteriol. 1987 Oct;169(10):4507-17.

44.

Chromosomal locations of three Bacillus subtilis din genes.

Gillespie K, Yasbin RE.

J Bacteriol. 1987 Jul;169(7):3372-4.

45.

Tight genetic linkage of a glucosyltransferase and dextranase of Streptococcus mutans GS-5.

Burne RA, Rubinfeld B, Bowen WH, Yasbin RE.

J Dent Res. 1986 Dec;65(12):1392-401.

PMID:
2946734
46.

Induction of the Bacillus subtilis SOS-like response by Escherichia coli RecA protein.

Love PE, Yasbin RE.

Proc Natl Acad Sci U S A. 1986 Jul;83(14):5204-8.

47.
48.

Cloning and expression of a Streptococcus mutans glucosyltransferase gene in Bacillus subtilis.

Burne RA, Rubinfeld B, Bowen WH, Yasbin RE.

Gene. 1986;47(2-3):201-9.

PMID:
2951298
49.
50.

DNA-damage-inducible (din) loci are transcriptionally activated in competent Bacillus subtilis.

Love PE, Lyle MJ, Yasbin RE.

Proc Natl Acad Sci U S A. 1985 Sep;82(18):6201-5.

Supplemental Content

Loading ...
Support Center