Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 59

1.

Identification of A Novel Class of Benzofuran Oxoacetic Acid-Derived Ligands that Selectively Activate Cellular EPAC1.

Beck EM, Parnell E, Cowley A, Porter A, Gillespie J, Robinson J, Robinson L, Pannifer AD, Hamon V, Jones P, Morrison A, McElroy S, Timmerman M, Rutjes H, Mahajan P, Wiejak J, Luchowska-Stańska U, Morgan D, Barker G, Rehmann H, Yarwood SJ.

Cells. 2019 Nov 12;8(11). pii: E1425. doi: 10.3390/cells8111425.

2.

Selective small-molecule EPAC activators.

Luchowska-Stańska U, Morgan D, Yarwood SJ, Barker G.

Biochem Soc Trans. 2019 Oct 31;47(5):1415-1427. doi: 10.1042/BST20190254.

3.

Genome-Wide Mapping Defines a Role for C/EBPβ and c-Jun in Non-Canonical Cyclic AMP Signalling.

Wiejak J, van Basten B, Hamilton G, Yarwood SJ.

Cells. 2019 Oct 14;8(10). pii: E1253. doi: 10.3390/cells8101253.

4.

The novel exchange protein activated by cyclic AMP 1 (EPAC1) agonist, I942, regulates inflammatory gene expression in human umbilical vascular endothelial cells (HUVECs).

Wiejak J, van Basten B, Luchowska-Stańska U, Hamilton G, Yarwood SJ.

Biochim Biophys Acta Mol Cell Res. 2019 Feb;1866(2):264-276. doi: 10.1016/j.bbamcr.2018.11.004. Epub 2018 Nov 9.

5.

The Potential of a Novel Class of EPAC-Selective Agonists to Combat Cardiovascular Inflammation.

Barker G, Parnell E, van Basten B, Buist H, Adams DR, Yarwood SJ.

J Cardiovasc Dev Dis. 2017 Dec 5;4(4). pii: E22. doi: 10.3390/jcdd4040022. Review.

6.

Probe-Dependent Negative Allosteric Modulators of the Long-Chain Free Fatty Acid Receptor FFA4.

Watterson KR, Hansen SVF, Hudson BD, Alvarez-Curto E, Raihan SZ, Azevedo CMG, Martin G, Dunlop J, Yarwood SJ, Ulven T, Milligan G.

Mol Pharmacol. 2017 Jun;91(6):630-641. doi: 10.1124/mol.116.107821. Epub 2017 Apr 6.

7.

Identification of a Novel, Small Molecule Partial Agonist for the Cyclic AMP Sensor, EPAC1.

Parnell E, McElroy SP, Wiejak J, Baillie GL, Porter A, Adams DR, Rehmann H, Smith BO, Yarwood SJ.

Sci Rep. 2017 Mar 22;7(1):294. doi: 10.1038/s41598-017-00455-7.

8.

Corrigendum to "Metformin suppresses adipogenesis through both AMP-activated protein kinase (AMPK)-dependent and AMPK-independent mechanisms" [Mol. Cell. Endocrinol. 440 15 January 2017 57-68].

Chen SC, Brooks R, Houskeeper J, Bremner SK, Dunlop J, Viollet B, Logan PJ, Salt IP, Ahmed SF, Yarwood SJ.

Mol Cell Endocrinol. 2017 Mar 5;443:176. doi: 10.1016/j.mce.2017.01.049. No abstract available.

9.

The cyclic AMP phosphodiesterase 4D5 (PDE4D5)/receptor for activated C-kinase 1 (RACK1) signalling complex as a sensor of the extracellular nano-environment.

Yarwood SJ, Parnell E, Bird RJ.

Cell Signal. 2017 Jul;35:282-289. doi: 10.1016/j.cellsig.2017.01.013. Epub 2017 Jan 6. Review.

PMID:
28069443
10.

Nanotopography controls cell cycle changes involved with skeletal stem cell self-renewal and multipotency.

Lee LC, Gadegaard N, de Andrés MC, Turner LA, Burgess KV, Yarwood SJ, Wells J, Salmeron-Sanchez M, Meek D, Oreffo RO, Dalby MJ.

Biomaterials. 2017 Feb;116:10-20. doi: 10.1016/j.biomaterials.2016.11.032. Epub 2016 Nov 24.

11.

Metformin suppresses adipogenesis through both AMP-activated protein kinase (AMPK)-dependent and AMPK-independent mechanisms.

Chen SC, Brooks R, Houskeeper J, Bremner SK, Dunlop J, Viollet B, Logan PJ, Salt IP, Ahmed SF, Yarwood SJ.

Mol Cell Endocrinol. 2017 Jan 15;440:57-68. doi: 10.1016/j.mce.2016.11.011. Epub 2016 Nov 14. Erratum in: Mol Cell Endocrinol. 2017 Mar 5;443:176.

12.

Epac1 links prostaglandin E2 to β-catenin-dependent transcription during epithelial-to-mesenchymal transition.

Jansen SR, Poppinga WJ, de Jager W, Lezoualc'h F, Cheng X, Wieland T, Yarwood SJ, Gosens R, Schmidt M.

Oncotarget. 2016 Jul 19;7(29):46354-46370. doi: 10.18632/oncotarget.10128.

13.

Dynamic Surfaces for the Study of Mesenchymal Stem Cell Growth through Adhesion Regulation.

Roberts JN, Sahoo JK, McNamara LE, Burgess KV, Yang J, Alakpa EV, Anderson HJ, Hay J, Turner LA, Yarwood SJ, Zelzer M, Oreffo RO, Ulijn RV, Dalby MJ.

ACS Nano. 2016 Jul 26;10(7):6667-79. doi: 10.1021/acsnano.6b01765. Epub 2016 Jun 27.

14.

Phosphorylation of ezrin on Thr567 is required for the synergistic activation of cell spreading by EPAC1 and protein kinase A in HEK293T cells.

Parnell E, Koschinski A, Zaccolo M, Cameron RT, Baillie GS, Baillie GL, Porter A, McElroy SP, Yarwood SJ.

Biochim Biophys Acta. 2015 Jul;1853(7):1749-58. doi: 10.1016/j.bbamcr.2015.04.009. Epub 2015 Apr 23.

15.

The future of EPAC-targeted therapies: agonism versus antagonism.

Parnell E, Palmer TM, Yarwood SJ.

Trends Pharmacol Sci. 2015 Apr;36(4):203-14. doi: 10.1016/j.tips.2015.02.003. Epub 2015 Mar 3. Review.

16.

The cAMP sensors, EPAC1 and EPAC2, display distinct subcellular distributions despite sharing a common nuclear pore localisation signal.

Parnell E, Smith BO, Yarwood SJ.

Cell Signal. 2015 May;27(5):989-96. doi: 10.1016/j.cellsig.2015.02.009. Epub 2015 Feb 12.

17.

Serine-727 phosphorylation activates hypothalamic STAT-3 independently from tyrosine-705 phosphorylation.

Breit A, Besik V, Solinski HJ, Muehlich S, Glas E, Yarwood SJ, Gudermann T.

Mol Endocrinol. 2015 Mar;29(3):445-59. doi: 10.1210/me.2014-1300. Epub 2015 Jan 13.

18.

Nanotopology potentiates growth hormone signalling and osteogenesis of mesenchymal stem cells.

Wang JR, Ahmed SF, Gadegaard N, Meek RM, Dalby MJ, Yarwood SJ.

Growth Horm IGF Res. 2014 Dec;24(6):245-50. doi: 10.1016/j.ghir.2014.10.003.

PMID:
25466909
19.

Adhesion and migration of cells responding to microtopography.

Estévez M, Martínez E, Yarwood SJ, Dalby MJ, Samitier J.

J Biomed Mater Res A. 2015 May;103(5):1659-68. doi: 10.1002/jbm.a.35293. Epub 2014 Aug 18.

PMID:
25089034
20.

Interactions between Epac1 and ezrin in the control of endothelial barrier function.

Parnell E, Yarwood SJ.

Biochem Soc Trans. 2014 Apr;42(2):274-8. doi: 10.1042/BST20130271. Review.

PMID:
24646230
21.

The role of c-Jun in controlling the EPAC1-dependent induction of the SOCS3 gene in HUVECs.

Wiejak J, Dunlop J, Yarwood SJ.

FEBS Lett. 2014 May 2;588(9):1556-61. doi: 10.1016/j.febslet.2014.02.038. Epub 2014 Mar 11.

23.

Genomic analysis of the role of transcription factor C/EBPδ in the regulation of cell behaviour on nanometric grooves.

Wiejak J, Tsimbouri PM, Herzyk P, Dalby MJ, Hamilton G, Yarwood SJ.

Biomaterials. 2013 Mar;34(8):1967-79. doi: 10.1016/j.biomaterials.2012.11.036. Epub 2012 Dec 13.

24.

The protein kinase C inhibitor, Ro-31-7459, is a potent activator of ERK and JNK MAP kinases in HUVECs and yet inhibits cyclic AMP-stimulated SOCS-3 gene induction through inactivation of the transcription factor c-Jun.

Wiejak J, Dunlop J, Stoyle C, Lappin G, McIlroy A, Pediani JD, Gao S, Yarwood SJ.

Cell Signal. 2012 Aug;24(8):1690-9. doi: 10.1016/j.cellsig.2012.04.016. Epub 2012 Apr 25.

25.
26.

Novel control of cAMP-regulated transcription in vascular endothelial cells.

Milne GR, Palmer TM, Yarwood SJ.

Biochem Soc Trans. 2012 Feb;40(1):1-5. doi: 10.1042/BST20110606.

PMID:
22260656
27.

Regulation of the inflammatory response of vascular endothelial cells by EPAC1.

Parnell E, Smith BO, Palmer TM, Terrin A, Zaccolo M, Yarwood SJ.

Br J Pharmacol. 2012 May;166(2):434-46. doi: 10.1111/j.1476-5381.2011.01808.x. Review.

28.

Exchange protein directly activated by cyclic AMP-1-regulated recruitment of CCAAT/enhancer-binding proteins to the suppressor of cytokine signaling-3 promoter.

Sands WA, Woolson HD, Yarwood SJ, Palmer TM.

Methods Mol Biol. 2012;809:201-14. doi: 10.1007/978-1-61779-376-9_14.

PMID:
22113278
29.
30.

Selective inhibition of cytokine-activated extracellular signal-regulated kinase by cyclic AMP via Epac1-dependent induction of suppressor of cytokine signalling-3.

Woolson HD, Thomson VS, Rutherford C, Yarwood SJ, Palmer TM.

Cell Signal. 2009 Nov;21(11):1706-15. doi: 10.1016/j.cellsig.2009.07.009. Epub 2009 Jul 24.

PMID:
19632320
31.

Activation of protein kinase Calpha by EPAC1 is required for the ERK- and CCAAT/enhancer-binding protein beta-dependent induction of the SOCS-3 gene by cyclic AMP in COS1 cells.

Borland G, Bird RJ, Palmer TM, Yarwood SJ.

J Biol Chem. 2009 Jun 26;284(26):17391-403. doi: 10.1074/jbc.M109.015370. Epub 2009 May 7.

32.

Mimitin - a novel cytokine-regulated mitochondrial protein.

Wegrzyn P, Yarwood SJ, Fiegler N, Bzowska M, Koj A, Mizgalska D, Malicki S, Pajak M, Kasza A, Kachamakova-Trojanowska N, Bereta J, Jura J, Jura J.

BMC Cell Biol. 2009 Mar 31;10:23. doi: 10.1186/1471-2121-10-23.

33.

EPAC proteins transduce diverse cellular actions of cAMP.

Borland G, Smith BO, Yarwood SJ.

Br J Pharmacol. 2009 Sep;158(1):70-86. doi: 10.1111/j.1476-5381.2008.00087.x. Epub 2009 Feb 6. Review.

34.

Identification of CCAAT/enhancer-binding proteins as exchange protein activated by cAMP-activated transcription factors that mediate the induction of the SOCS-3 gene.

Yarwood SJ, Borland G, Sands WA, Palmer TM.

J Biol Chem. 2008 Mar 14;283(11):6843-53. doi: 10.1074/jbc.M710342200. Epub 2008 Jan 14.

35.

The effect of the RACK1 signalling protein on the regulation of cell adhesion and cell contact guidance on nanometric grooves.

Dalby MJ, Hart A, Yarwood SJ.

Biomaterials. 2008 Jan;29(3):282-9. Epub 2007 Oct 22.

PMID:
17936896
36.

Analysis of focal adhesions and cytoskeleton by custom microarray.

Dalby MJ, Yarwood SJ.

Methods Mol Biol. 2007;370:121-34.

PMID:
17416992
37.

Fibroblast signaling events in response to nanotopography: a gene array study.

Dalby MJ, Yarwood SJ, Johnstone HJ, Affrossman S, Riehle MO.

IEEE Trans Nanobioscience. 2002 Mar;1(1):12-7.

PMID:
16689216
38.
39.

Microtubule-associated protein 1B-light chain 1 enhances activation of Rap1 by exchange protein activated by cyclic AMP but not intracellular targeting.

Borland G, Gupta M, Magiera MM, Rundell CJ, Fuld S, Yarwood SJ.

Mol Pharmacol. 2006 Jan;69(1):374-84. Epub 2005 Oct 21.

PMID:
16244178
41.
42.

Exchange protein directly activated by cAMP (EPAC) interacts with the light chain (LC) 2 of MAP1A.

Magiera MM, Gupta M, Rundell CJ, Satish N, Ernens I, Yarwood SJ.

Biochem J. 2004 Sep 15;382(Pt 3):803-10.

43.

Protease inhibitors prevent the protein kinase A-dependent loss of Rap1 GTPase from the particulate fraction of COS1 cells.

Rundell CJ, Repellin CE, Yarwood SJ.

Biochem Biophys Res Commun. 2004 Mar 19;315(4):1077-81.

PMID:
14985123
44.

Effect of cellular uptake of gelatin nanoparticles on adhesion, morphology and cytoskeleton organisation of human fibroblasts.

Gupta AK, Gupta M, Yarwood SJ, Curtis AS.

J Control Release. 2004 Mar 5;95(2):197-207.

PMID:
14980768
45.

Nucleus alignment and cell signaling in fibroblasts: response to a micro-grooved topography.

Dalby MJ, Riehle MO, Yarwood SJ, Wilkinson CD, Curtis AS.

Exp Cell Res. 2003 Apr 1;284(2):274-82.

PMID:
12651159
46.

The RACK1 scaffold protein: a dynamic cog in cell response mechanisms.

McCahill A, Warwicker J, Bolger GB, Houslay MD, Yarwood SJ.

Mol Pharmacol. 2002 Dec;62(6):1261-73. Review. No abstract available.

PMID:
12435793
47.

Delineation of RAID1, the RACK1 interaction domain located within the unique N-terminal region of the cAMP-specific phosphodiesterase, PDE4D5.

Bolger GB, McCahill A, Yarwood SJ, Steele MR, Warwicker J, Houslay MD.

BMC Biochem. 2002 Aug 23;3:24.

48.

Increasing fibroblast response to materials using nanotopography: morphological and genetic measurements of cell response to 13-nm-high polymer demixed islands.

Dalby MJ, Yarwood SJ, Riehle MO, Johnstone HJ, Affrossman S, Curtis AS.

Exp Cell Res. 2002 May 15;276(1):1-9.

PMID:
11978003
49.

Extracellular matrix composition determines the transcriptional response to epidermal growth factor receptor activation.

Yarwood SJ, Woodgett JR.

Proc Natl Acad Sci U S A. 2001 Apr 10;98(8):4472-7. Epub 2001 Apr 3.

Supplemental Content

Loading ...
Support Center