Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 25

1.

Single molecule super-resolution imaging of bacterial cell pole proteins with high-throughput quantitative analysis pipeline.

Altinoglu I, Merrifield CJ, Yamaichi Y.

Sci Rep. 2019 Apr 30;9(1):6680. doi: 10.1038/s41598-019-43051-7.

2.

Mutation in ESBL Plasmid from Escherichia coli O104:H4 Leads Autoagglutination and Enhanced Plasmid Dissemination.

Poidevin M, Sato M, Altinoglu I, Delaplace M, Sato C, Yamaichi Y.

Front Microbiol. 2018 Feb 2;9:130. doi: 10.3389/fmicb.2018.00130. eCollection 2018.

3.

WGADseq: Whole Genome Affinity Determination of Protein-DNA Binding Sites.

Poidevin M, Galli E, Yamaichi Y, Barre FX.

Methods Mol Biol. 2017;1624:53-60. doi: 10.1007/978-1-4939-7098-8_5.

PMID:
28842875
4.

Transposon Insertion Site Sequencing for Synthetic Lethal Screening.

Yamaichi Y, Dörr T.

Methods Mol Biol. 2017;1624:39-49. doi: 10.1007/978-1-4939-7098-8_4.

PMID:
28842874
5.

Cell division licensing in the multi-chromosomal Vibrio cholerae bacterium.

Galli E, Poidevin M, Le Bars R, Desfontaines JM, Muresan L, Paly E, Yamaichi Y, Barre FX.

Nat Microbiol. 2016 Jun 27;1(9):16094. doi: 10.1038/nmicrobiol.2016.94.

PMID:
27562255
6.

High-resolution genetic analysis of the requirements for horizontal transmission of the ESBL plasmid from Escherichia coli O104:H4.

Yamaichi Y, Chao MC, Sasabe J, Clark L, Davis BM, Yamamoto N, Mori H, Kurokawa K, Waldor MK.

Nucleic Acids Res. 2015 Jan;43(1):348-60. doi: 10.1093/nar/gku1262. Epub 2014 Dec 3.

7.

A multidomain hub anchors the chromosome segregation and chemotactic machinery to the bacterial pole.

Yamaichi Y, Bruckner R, Ringgaard S, Möll A, Cameron DE, Briegel A, Jensen GJ, Davis BM, Waldor MK.

Genes Dev. 2012 Oct 15;26(20):2348-60. doi: 10.1101/gad.199869.112.

8.

Regulatory cross-talk links Vibrio cholerae chromosome II replication and segregation.

Yamaichi Y, Gerding MA, Davis BM, Waldor MK.

PLoS Genet. 2011 Jul;7(7):e1002189. doi: 10.1371/journal.pgen.1002189. Epub 2011 Jul 21.

9.

The origin of the Haitian cholera outbreak strain.

Chin CS, Sorenson J, Harris JB, Robins WP, Charles RC, Jean-Charles RR, Bullard J, Webster DR, Kasarskis A, Peluso P, Paxinos EE, Yamaichi Y, Calderwood SB, Mekalanos JJ, Schadt EE, Waldor MK.

N Engl J Med. 2011 Jan 6;364(1):33-42. doi: 10.1056/NEJMoa1012928. Epub 2010 Dec 9.

10.

The three vibrio cholerae chromosome II-encoded ParE toxins degrade chromosome I following loss of chromosome II.

Yuan J, Yamaichi Y, Waldor MK.

J Bacteriol. 2011 Feb;193(3):611-9. doi: 10.1128/JB.01185-10. Epub 2010 Nov 29.

11.

Targeting the replication initiator of the second Vibrio chromosome: towards generation of vibrionaceae-specific antimicrobial agents.

Yamaichi Y, Duigou S, Shakhnovich EA, Waldor MK.

PLoS Pathog. 2009 Nov;5(11):e1000663. doi: 10.1371/journal.ppat.1000663. Epub 2009 Nov 20.

12.

ATP negatively regulates the initiator protein of Vibrio cholerae chromosome II replication.

Duigou S, Yamaichi Y, Waldor MK.

Proc Natl Acad Sci U S A. 2008 Jul 29;105(30):10577-82. doi: 10.1073/pnas.0803904105. Epub 2008 Jul 22.

13.

Distribution of centromere-like parS sites in bacteria: insights from comparative genomics.

Livny J, Yamaichi Y, Waldor MK.

J Bacteriol. 2007 Dec;189(23):8693-703. Epub 2007 Sep 28.

14.
15.

Distinct centromere-like parS sites on the two chromosomes of Vibrio spp.

Yamaichi Y, Fogel MA, McLeod SM, Hui MP, Waldor MK.

J Bacteriol. 2007 Jul;189(14):5314-24. Epub 2007 May 11.

16.

par genes and the pathology of chromosome loss in Vibrio cholerae.

Yamaichi Y, Fogel MA, Waldor MK.

Proc Natl Acad Sci U S A. 2007 Jan 9;104(2):630-5. Epub 2006 Dec 29.

17.
18.

Structure and binding mode of a ribosome recycling factor (RRF) from mesophilic bacterium.

Nakano H, Yoshida T, Uchiyama S, Kawachi M, Matsuo H, Kato T, Ohshima A, Yamaichi Y, Honda T, Kato H, Yamagata Y, Ohkubo T, Kobayashi Y.

J Biol Chem. 2003 Jan 31;278(5):3427-36. Epub 2002 Oct 30.

19.

Active segregation by the Bacillus subtilis partitioning system in Escherichia coli.

Yamaichi Y, Niki H.

Proc Natl Acad Sci U S A. 2000 Dec 19;97(26):14656-61.

20.

Genetic characterization of DNA region containing the trh and ure genes of Vibrio parahaemolyticus.

Park KS, Iida T, Yamaichi Y, Oyagi T, Yamamoto K, Honda T.

Infect Immun. 2000 Oct;68(10):5742-8.

21.

A filamentous phage associated with recent pandemic Vibrio parahaemolyticus O3:K6 strains.

Nasu H, Iida T, Sugahara T, Yamaichi Y, Park KS, Yokoyama K, Makino K, Shinagawa H, Honda T.

J Clin Microbiol. 2000 Jun;38(6):2156-61.

22.

Dynamic organization of chromosomal DNA in Escherichia coli.

Niki H, Yamaichi Y, Hiraga S.

Genes Dev. 2000 Jan 15;14(2):212-23.

23.

Physical and genetic map of the genome of Vibrio parahaemolyticus: presence of two chromosomes in Vibrio species.

Yamaichi Y, Iida T, Park KS, Yamamoto K, Honda T.

Mol Microbiol. 1999 Mar;31(5):1513-21.

24.

Close proximity of the tdh, trh and ure genes on the chromosome of Vibrio parahaemolyticus.

Iida T, Park KS, Suthienkul O, Kozawa J, Yamaichi Y, Yamamoto K, Honda T.

Microbiology. 1998 Sep;144 ( Pt 9):2517-23.

PMID:
9782499
25.

Complete nucleotide sequences of 93-kb and 3.3-kb plasmids of an enterohemorrhagic Escherichia coli O157:H7 derived from Sakai outbreak.

Makino K, Ishii K, Yasunaga T, Hattori M, Yokoyama K, Yutsudo CH, Kubota Y, Yamaichi Y, Iida T, Yamamoto K, Honda T, Han CG, Ohtsubo E, Kasamatsu M, Hayashi T, Kuhara S, Shinagawa H.

DNA Res. 1998 Feb 28;5(1):1-9.

Supplemental Content

Loading ...
Support Center