Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 39

1.

Induction of memory-like dendritic cell responses in vivo.

Hole CR, Wager CML, Castro-Lopez N, Campuzano A, Cai H, Wozniak KL, Wang Y, Wormley FL Jr.

Nat Commun. 2019 Jul 4;10(1):2955. doi: 10.1038/s41467-019-10486-5.

2.

Phosphatidylinositol 4,5-bisphosphate (PIP2) and Ca2+ are both required to open the Cl- channel TMEM16A.

Tembo M, Wozniak KL, Bainbridge RE, Carlson AE.

J Biol Chem. 2019 Aug 16;294(33):12556-12564. doi: 10.1074/jbc.RA118.007128. Epub 2019 Jul 2.

PMID:
31266809
3.

Ion channels and signaling pathways used in the fast polyspermy block.

Wozniak KL, Carlson AE.

Mol Reprod Dev. 2019 May 13. doi: 10.1002/mrd.23168. [Epub ahead of print] Review.

PMID:
31087507
4.

IFN-γ immune priming of macrophages in vivo induces prolonged STAT1 binding and protection against Cryptococcus neoformans.

Leopold Wager CM, Hole CR, Campuzano A, Castro-Lopez N, Cai H, Caballero Van Dyke MC, Wozniak KL, Wang Y, Wormley FL Jr.

PLoS Pathog. 2018 Oct 10;14(10):e1007358. doi: 10.1371/journal.ppat.1007358. eCollection 2018 Oct.

5.

The TMEM16A channel mediates the fast polyspermy block in Xenopus laevis.

Wozniak KL, Phelps WA, Tembo M, Lee MT, Carlson AE.

J Gen Physiol. 2018 Sep 3;150(9):1249-1259. doi: 10.1085/jgp.201812071. Epub 2018 Jul 16.

6.

PLC and IP3-evoked Ca2+ release initiate the fast block to polyspermy in Xenopus laevis eggs.

Wozniak KL, Tembo M, Phelps WA, Lee MT, Carlson AE.

J Gen Physiol. 2018 Sep 3;150(9):1239-1248. doi: 10.1085/jgp.201812069. Epub 2018 Jul 16.

7.

Interactions of Cryptococcus with Dendritic Cells.

Wozniak KL.

J Fungi (Basel). 2018 Mar 15;4(1). pii: E36. doi: 10.3390/jof4010036. Review.

8.

Induction of Broad-Spectrum Protective Immunity against Disparate Cryptococcus Serotypes.

Van Dyke MCC, Chaturvedi AK, Hardison SE, Leopold Wager CM, Castro-Lopez N, Hole CR, Wozniak KL, Wormley FL Jr.

Front Immunol. 2017 Oct 30;8:1359. doi: 10.3389/fimmu.2017.01359. eCollection 2017.

9.

Extracellular Ca2+ Is Required for Fertilization in the African Clawed Frog, Xenopus laevis.

Wozniak KL, Mayfield BL, Duray AM, Tembo M, Beleny DO, Napolitano MA, Sauer ML, Wisner BW, Carlson AE.

PLoS One. 2017 Jan 23;12(1):e0170405. doi: 10.1371/journal.pone.0170405. eCollection 2017.

10.

Dectin-3 Is Not Required for Protection against Cryptococcus neoformans Infection.

Campuzano A, Castro-Lopez N, Wozniak KL, Leopold Wager CM, Wormley FL Jr.

PLoS One. 2017 Jan 20;12(1):e0169347. doi: 10.1371/journal.pone.0169347. eCollection 2017.

11.

Antifungal Activity of Plasmacytoid Dendritic Cells against Cryptococcus neoformans In Vitro Requires Expression of Dectin-3 (CLEC4D) and Reactive Oxygen Species.

Hole CR, Leopold Wager CM, Mendiola AS, Wozniak KL, Campuzano A, Lin X, Wormley FL Jr.

Infect Immun. 2016 Aug 19;84(9):2493-504. doi: 10.1128/IAI.00103-16. Print 2016 Sep.

12.

Flow Cytometric Analysis of Protective T-Cell Response Against Pulmonary Coccidioides Infection.

Hung CY, Wozniak KL, Cole GT.

Methods Mol Biol. 2016;1403:551-66. doi: 10.1007/978-1-4939-3387-7_31.

PMID:
27076153
13.

Cryptococcus and Phagocytes: Complex Interactions that Influence Disease Outcome.

Leopold Wager CM, Hole CR, Wozniak KL, Wormley FL Jr.

Front Microbiol. 2016 Feb 9;7:105. doi: 10.3389/fmicb.2016.00105. eCollection 2016. Review.

14.

Development of protective inflammation and cell-mediated immunity against Cryptococcus neoformans after exposure to hyphal mutants.

Zhai B, Wozniak KL, Masso-Silva J, Upadhyay S, Hole C, Rivera A, Wormley FL Jr, Lin X.

MBio. 2015 Oct 6;6(5):e01433-15. doi: 10.1128/mBio.01433-15.

15.

STAT1 signaling within macrophages is required for antifungal activity against Cryptococcus neoformans.

Leopold Wager CM, Hole CR, Wozniak KL, Olszewski MA, Mueller M, Wormley FL Jr.

Infect Immun. 2015 Dec;83(12):4513-27. doi: 10.1128/IAI.00935-15. Epub 2015 Sep 8.

16.

Fecal Microbiota Transplantation Eliminates Clostridium difficile in a Murine Model of Relapsing Disease.

Seekatz AM, Theriot CM, Molloy CT, Wozniak KL, Bergin IL, Young VB.

Infect Immun. 2015 Oct;83(10):3838-46. doi: 10.1128/IAI.00459-15. Epub 2015 Jul 13.

17.

Molecules at the interface of Cryptococcus and the host that determine disease susceptibility.

Wozniak KL, Olszewski MA, Wormley FL Jr.

Fungal Genet Biol. 2015 May;78:87-92. doi: 10.1016/j.fgb.2014.10.013. Epub 2014 Nov 1. Review.

PMID:
25445308
18.

STAT1 signaling is essential for protection against Cryptococcus neoformans infection in mice.

Leopold Wager CM, Hole CR, Wozniak KL, Olszewski MA, Wormley FL Jr.

J Immunol. 2014 Oct 15;193(8):4060-71. doi: 10.4049/jimmunol.1400318. Epub 2014 Sep 8.

19.

Vaccine-mediated immune responses to experimental pulmonary Cryptococcus gattii infection in mice.

Chaturvedi AK, Hameed RS, Wozniak KL, Hole CR, Leopold Wager CM, Weintraub ST, Lopez-Ribot JL, Wormley FL Jr.

PLoS One. 2014 Aug 13;9(8):e104316. doi: 10.1371/journal.pone.0104316. eCollection 2014.

20.

Characterization of IL-22 and antimicrobial peptide production in mice protected against pulmonary Cryptococcus neoformans infection.

Wozniak KL, Hole CR, Yano J, Fidel PL Jr, Wormley FL Jr.

Microbiology. 2014 Jul;160(Pt 7):1440-52. doi: 10.1099/mic.0.073445-0. Epub 2014 Apr 23.

21.

Depletion of neutrophils in a protective model of pulmonary cryptococcosis results in increased IL-17A production by γδ T cells.

Wozniak KL, Kolls JK, Wormley FL Jr.

BMC Immunol. 2012 Dec 7;13:65. doi: 10.1186/1471-2172-13-65.

22.

Mechanisms of dendritic cell lysosomal killing of Cryptococcus.

Hole CR, Bui H, Wormley FL Jr, Wozniak KL.

Sci Rep. 2012;2:739. doi: 10.1038/srep00739. Epub 2012 Oct 16.

23.

The acute neutrophil response mediated by S100 alarmins during vaginal Candida infections is independent of the Th17-pathway.

Yano J, Kolls JK, Happel KI, Wormley F, Wozniak KL, Fidel PL Jr.

PLoS One. 2012;7(9):e46311. doi: 10.1371/journal.pone.0046311. Epub 2012 Sep 25.

24.

Protective immunity against pulmonary cryptococcosis is associated with STAT1-mediated classical macrophage activation.

Hardison SE, Herrera G, Young ML, Hole CR, Wozniak KL, Wormley FL Jr.

J Immunol. 2012 Oct 15;189(8):4060-8. doi: 10.4049/jimmunol.1103455. Epub 2012 Sep 14.

25.

Induction of protective immunity against cryptococcosis.

Wozniak KL, Hardison S, Olszewski M, Wormley FL Jr.

Mycopathologia. 2012 Jun;173(5-6):387-94. doi: 10.1007/s11046-011-9505-8. Epub 2011 Dec 6. Review.

PMID:
22143898
26.

Protective immunity against experimental pulmonary cryptococcosis in T cell-depleted mice.

Wozniak KL, Young ML, Wormley FL Jr.

Clin Vaccine Immunol. 2011 May;18(5):717-23. doi: 10.1128/CVI.00036-11. Epub 2011 Mar 30.

27.

Role of IL-17A on resolution of pulmonary C. neoformans infection.

Wozniak KL, Hardison SE, Kolls JK, Wormley FL.

PLoS One. 2011 Feb 17;6(2):e17204. doi: 10.1371/journal.pone.0017204.

28.

Interleukin-17 is not required for classical macrophage activation in a pulmonary mouse model of Cryptococcus neoformans infection.

Hardison SE, Wozniak KL, Kolls JK, Wormley FL Jr.

Infect Immun. 2010 Dec;78(12):5341-51. doi: 10.1128/IAI.00845-10. Epub 2010 Oct 4.

29.

Pulmonary infection with an interferon-gamma-producing Cryptococcus neoformans strain results in classical macrophage activation and protection.

Hardison SE, Ravi S, Wozniak KL, Young ML, Olszewski MA, Wormley FL Jr.

Am J Pathol. 2010 Feb;176(2):774-85. doi: 10.2353/ajpath.2010.090634. Epub 2010 Jan 7.

30.

Insights into the mechanisms of protective immunity against Cryptococcus neoformans infection using a mouse model of pulmonary cryptococcosis.

Wozniak KL, Ravi S, Macias S, Young ML, Olszewski MA, Steele C, Wormley FL.

PLoS One. 2009 Sep 3;4(9):e6854. doi: 10.1371/journal.pone.0006854.

31.

Isolation and purification of antigenic components of Cryptococcus.

Wozniak KL, Levitz SM.

Methods Mol Biol. 2009;470:71-83. doi: 10.1007/978-1-59745-204-5_7.

32.

Cryptococcus neoformans enters the endolysosomal pathway of dendritic cells and is killed by lysosomal components.

Wozniak KL, Levitz SM.

Infect Immun. 2008 Oct;76(10):4764-71. doi: 10.1128/IAI.00660-08. Epub 2008 Aug 4.

33.

In vivo role of dendritic cells in a murine model of pulmonary cryptococcosis.

Wozniak KL, Vyas JM, Levitz SM.

Infect Immun. 2006 Jul;74(7):3817-24.

34.

Immunotherapeutic approaches to enhance protective immunity against Candida vaginitis.

Wozniak KL, Palmer G, Kutner R, Fidel PL Jr.

Med Mycol. 2005 Nov;43(7):589-601.

PMID:
16396244
35.

The role of Candida albicans NOT5 in virulence depends upon diverse host factors in vivo.

Cheng S, Clancy CJ, Checkley MA, Zhang Z, Wozniak KL, Seshan KR, Jia HY, Fidel P Jr, Cole G, Nguyen MH.

Infect Immun. 2005 Nov;73(11):7190-7.

36.

Contribution of cell surface hydrophobicity protein 1 (Csh1p) to virulence of hydrophobic Candida albicans serotype A cells.

Singleton DR, Fidel PL Jr, Wozniak KL, Hazen KC.

FEMS Microbiol Lett. 2005 Mar 15;244(2):373-7.

37.

Candida-specific antibodies during experimental vaginal candidiasis in mice.

Wozniak KL, Wormley FL Jr, Fidel PL Jr.

Infect Immun. 2002 Oct;70(10):5790-9.

38.

A comprehensive study of Candida-specific antibodies in the saliva of human immunodeficiency virus-positive individuals with oropharyngeal candidiasis.

Wozniak KL, Leigh JE, Hager S, Swoboda RK, Fidel PL Jr.

J Infect Dis. 2002 May 1;185(9):1269-76. Epub 2002 Apr 16.

PMID:
12001044
39.

Inhibitory effects of whole and parotid saliva on immunomodulators.

Wozniak KL, Arribas A, Leigh JE, Fidel PL Jr.

Oral Microbiol Immunol. 2002 Apr;17(2):100-7.

PMID:
11929557

Supplemental Content

Loading ...
Support Center