Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 81

1.

The Birth of Animal Development: Multicellularity and the Germline.

Woodland HR.

Curr Top Dev Biol. 2016;117:609-30. doi: 10.1016/bs.ctdb.2015.10.020. Epub 2016 Jan 7. Review.

PMID:
26970004
2.

Protein interactions in Xenopus germ plasm RNP particles.

Nijjar S, Woodland HR.

PLoS One. 2013 Nov 12;8(11):e80077. doi: 10.1371/journal.pone.0080077. eCollection 2013.

3.

Localisation of RNAs into the germ plasm of vitellogenic Xenopus oocytes.

Nijjar S, Woodland HR.

PLoS One. 2013 Apr 23;8(4):e61847. doi: 10.1371/journal.pone.0061847. Print 2013.

4.

Poc1A and Poc1B act together in human cells to ensure centriole integrity.

Venoux M, Tait X, Hames RS, Straatman KR, Woodland HR, Fry AM.

J Cell Sci. 2013 Jan 1;126(Pt 1):163-75. doi: 10.1242/jcs.111203. Epub 2012 Sep 26.

5.

The 40th anniversary issue of Differentiation-Cilia in development, differentiation and disease.

Lehtonen E, Woodland HR.

Differentiation. 2012 Feb;83(2):S1-3. doi: 10.1016/j.diff.2011.12.001. Epub 2011 Dec 20. No abstract available.

PMID:
22192335
6.

Pix proteins and the evolution of centrioles.

Woodland HR, Fry AM.

PLoS One. 2008;3(11):e3778. doi: 10.1371/journal.pone.0003778. Epub 2008 Nov 20.

7.

The core endodermal gene network of vertebrates: combining developmental precision with evolutionary flexibility.

Woodland HR, Zorn AM.

Bioessays. 2008 Aug;30(8):757-65. doi: 10.1002/bies.20785.

PMID:
18623060
8.

Pix1 and Pix2 are novel WD40 microtubule-associated proteins that colocalize with mitochondria in Xenopus germ plasm and centrosomes in human cells.

Hames RS, Hames R, Prosser SL, Euteneuer U, Lopes CA, Moore W, Woodland HR, Fry AM.

Exp Cell Res. 2008 Feb 1;314(3):574-89. Epub 2007 Nov 6.

PMID:
18068700
9.

The efficiency of Xenopus primordial germ cell migration depends on the germplasm mRNA encoding the PDZ domain protein Grip2.

Kirilenko P, Weierud FK, Zorn AM, Woodland HR.

Differentiation. 2008 Apr;76(4):392-403. Epub 2007 Oct 9.

PMID:
17924960
10.

Regulation of the Xenopus Xsox17alpha(1) promoter by co-operating VegT and Sox17 sites.

Howard L, Rex M, Clements D, Woodland HR.

Dev Biol. 2007 Oct 15;310(2):402-15. Epub 2007 Jul 31.

11.

The protein encoded by the germ plasm RNA Germes associates with dynein light chains and functions in Xenopus germline development.

Berekelya LA, Mikryukov AA, Luchinskaya NN, Ponomarev MB, Woodland HR, Belyavsky AV.

Differentiation. 2007 Jul;75(6):546-58. Epub 2007 Feb 16.

PMID:
17309602
12.

Global analysis of the transcriptional network controlling Xenopus endoderm formation.

Sinner D, Kirilenko P, Rankin S, Wei E, Howard L, Kofron M, Heasman J, Woodland HR, Zorn AM.

Development. 2006 May;133(10):1955-66.

13.

Xenopus Xpat protein is a major component of germ plasm and may function in its organisation and positioning.

Machado RJ, Moore W, Hames R, Houliston E, Chang P, King ML, Woodland HR.

Dev Biol. 2005 Nov 15;287(2):289-300. Epub 2005 Oct 7.

14.
16.
17.

Initiation and early patterning of the endoderm.

Clements D, Rex M, Woodland HR.

Int Rev Cytol. 2001;203:383-446. Review.

PMID:
11131522
18.
19.

Mode of action of VegT in mesoderm and endoderm formation.

Clements D, Friday RV, Woodland HR.

Development. 1999 Nov;126(21):4903-11.

20.
21.

Involvement of NF-kappaB associated proteins in FGF-mediated mesoderm induction.

Beck CW, Sutherland DJ, Woodland HR.

Int J Dev Biol. 1998 Jan;42(1):67-77.

22.

Xsox17alpha and -beta mediate endoderm formation in Xenopus.

Hudson C, Clements D, Friday RV, Stott D, Woodland HR.

Cell. 1997 Oct 31;91(3):397-405.

23.
24.

Developmental effects of over-expression of normal and mutated forms of a Xenopus NF-kappa B homologue.

Richardson JC, Gatherer D, Woodland HR.

Mech Dev. 1995 Aug;52(2-3):165-77.

27.
28.

The possible role of mesodermal growth factors in the formation of endoderm inXenopus laevis.

Jones EA, Abel MH, Woodland HR.

Roux Arch Dev Biol. 1993 Apr;202(4):233-239. doi: 10.1007/BF02427884.

PMID:
28305766
29.

Regulation of expression of a Xenopus borealis embryonic/larval alpha 3 skeletal-actin gene.

Boardman M, Cross GS, Jones EA, Woodland HR.

Eur J Biochem. 1992 Sep 1;208(2):241-9.

30.

Mutational analysis of the galactose binding ability of recombinant ricin B chain.

Wales R, Richardson PT, Roberts LM, Woodland HR, Lord JM.

J Biol Chem. 1991 Oct 15;266(29):19172-9.

31.

The effects of N-glycosylation on the lectin activity of recombinant ricin B chain.

Richardson PT, Hussain K, Woodland HR, Lord JM, Roberts LM.

Carbohydr Res. 1991 Jun 25;213:19-25.

PMID:
1718601
32.

Regulation of protein synthesis in early amphibian development.

Woodland HR.

J Reprod Fertil Suppl. 1990;42:215-24. Review. No abstract available.

PMID:
2077124
33.

Mesoderm formation in Xenopus.

Woodland HR.

Cell. 1989 Dec 1;59(5):767-70. Review. No abstract available.

PMID:
2686837
34.

Spatial aspects of neural induction in Xenopus laevis.

Jones EA, Woodland HR.

Development. 1989 Dec;107(4):785-91.

35.

Mesoderm induction in the future tail region of Xenopus.

Woodland HR, Jones EA.

Roux Arch Dev Biol. 1988 Dec;197(7):441-446. doi: 10.1007/BF00398996.

PMID:
28305752
36.

The organisation and expression of histone genes from Xenopus borealis.

Turner PC, Bagenal EB, Vlad MT, Woodland HR.

Nucleic Acids Res. 1988 Apr 25;16(8):3471-85.

37.

Cytoskeletal actin gene families of Xenopus borealis and Xenopus laevis.

Cross GS, Wilson C, Erba HP, Woodland HR.

J Mol Evol. 1988;27(1):17-28.

PMID:
3133485
38.

The development of an assay to detect mRNAs that affect early development.

Woodland HR, Jones EA.

Development. 1987 Dec;101(4):925-30.

39.

Tissue-specific expression of actin genes injected into Xenopus embryos.

Wilson C, Cross GS, Woodland HR.

Cell. 1986 Nov 21;47(4):589-99.

PMID:
3779838
40.
41.

Polyadenylation of histone mRNA in Xenopus oocytes and embryos.

Ballantine JE, Woodland HR.

FEBS Lett. 1985 Jan 28;180(2):224-8.

42.

Histone genes: not so simple after all.

Old RW, Woodland HR.

Cell. 1984 Oct;38(3):624-6. No abstract available.

PMID:
6207931
43.

Are there major developmentally regulated H4 gene classes in Xenopus?

Woodland HR, Warmington JR, Ballantine JE, Turner PC.

Nucleic Acids Res. 1984 Jun 25;12(12):4939-58.

44.
45.
46.

Organization and expression of cloned histone gene clusters from Xenopus laevis and X. borealis.

Old RW, Woodland HR, Ballantine JE, Aldridge TC, Newton CA, Bains WA, Turner PC.

Nucleic Acids Res. 1982 Dec 11;10(23):7561-80.

47.

The DNase I sensitivity of Xenopus laevis genes transcribed by RNA polymerase III.

Coveney J, Woodland HR.

Nature. 1982 Aug 5;298(5874):578-80.

PMID:
6285200
48.

H3 and H4 histone cDNA sequences from Xenopus: a sequence comparison of H4 genes.

Turner PC, Woodland HR.

Nucleic Acids Res. 1982 Jun 25;10(12):3769-80.

49.

Stability of non-polyadenylated viral mRNAs injected into frog oocytes.

McCrae MA, Woodland HR.

Eur J Biochem. 1981 Jun 1;116(3):467-70.

50.

Paternal gene expression in developing hybrid embryos of Xenopus laevis and Xenopus borealis.

Woodland HR, Ballantine JE.

J Embryol Exp Morphol. 1980 Dec;60:359-72.

Supplemental Content

Loading ...
Support Center