Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 13

1.

Enzymatic fuel cells with an oxygen resistant variant of pyranose-2-oxidase as anode biocatalyst.

Şahin S, Wongnate T, Chuaboon L, Chaiyen P, Yu EH.

Biosens Bioelectron. 2018 Jun 1;107:17-25. doi: 10.1016/j.bios.2018.01.065. Epub 2018 Feb 1.

PMID:
29427882
2.

The radical mechanism of biological methane synthesis by methyl-coenzyme M reductase.

Wongnate T, Sliwa D, Ginovska B, Smith D, Wolf MW, Lehnert N, Raugei S, Ragsdale SW.

Science. 2016 May 20;352(6288):953-8. doi: 10.1126/science.aaf0616.

3.

The reaction mechanism of methyl-coenzyme M reductase: how an enzyme enforces strict binding order.

Wongnate T, Ragsdale SW.

J Biol Chem. 2015 Apr 10;290(15):9322-34. doi: 10.1074/jbc.M115.636761. Epub 2015 Feb 17.

4.

Magnetic field effects as a result of the radical pair mechanism are unlikely in redox enzymes.

Messiha HL, Wongnate T, Chaiyen P, Jones AR, Scrutton NS.

J R Soc Interface. 2015 Feb 6;12(103). pii: 20141155. doi: 10.1098/rsif.2014.1155.

5.

Proton-coupled electron transfer and adduct configuration are important for C4a-hydroperoxyflavin formation and stabilization in a flavoenzyme.

Wongnate T, Surawatanawong P, Visitsatthawong S, Sucharitakul J, Scrutton NS, Chaiyen P.

J Am Chem Soc. 2014 Jan 8;136(1):241-53. doi: 10.1021/ja4088055. Epub 2013 Dec 24.

PMID:
24368083
6.

The substrate oxidation mechanism of pyranose 2-oxidase and other related enzymes in the glucose-methanol-choline superfamily.

Wongnate T, Chaiyen P.

FEBS J. 2013 Jul;280(13):3009-27. doi: 10.1111/febs.12280. Epub 2013 May 10. Review.

7.

The 1.6 Å crystal structure of pyranose dehydrogenase from Agaricus meleagris rationalizes substrate specificity and reveals a flavin intermediate.

Tan TC, Spadiut O, Wongnate T, Sucharitakul J, Krondorfer I, Sygmund C, Haltrich D, Chaiyen P, Peterbauer CK, Divne C.

PLoS One. 2013;8(1):e53567. doi: 10.1371/journal.pone.0053567. Epub 2013 Jan 9.

8.

Reduction kinetics of 3-hydroxybenzoate 6-hydroxylase from Rhodococcus jostii RHA1.

Sucharitakul J, Wongnate T, Montersino S, van Berkel WJ, Chaiyen P.

Biochemistry. 2012 May 29;51(21):4309-21. doi: 10.1021/bi201823c. Epub 2012 May 17.

PMID:
22559817
9.

Identification of a catalytic base for sugar oxidation in the pyranose 2-oxidase reaction.

Wongnate T, Sucharitakul J, Chaiyen P.

Chembiochem. 2011 Nov 25;12(17):2577-86. doi: 10.1002/cbic.201100564. Epub 2011 Oct 19.

PMID:
22012709
10.

Hydrogen peroxide elimination from C4a-hydroperoxyflavin in a flavoprotein oxidase occurs through a single proton transfer from flavin N5 to a peroxide leaving group.

Sucharitakul J, Wongnate T, Chaiyen P.

J Biol Chem. 2011 May 13;286(19):16900-9. doi: 10.1074/jbc.M111.222976. Epub 2011 Mar 19.

11.

H-bonding and positive charge at the N5/O4 locus are critical for covalent flavin attachment in trametes pyranose 2-oxidase.

Tan TC, Pitsawong W, Wongnate T, Spadiut O, Haltrich D, Chaiyen P, Divne C.

J Mol Biol. 2010 Sep 24;402(3):578-94. doi: 10.1016/j.jmb.2010.08.011. Epub 2010 Aug 12.

PMID:
20708626
12.

Kinetic isotope effects on the noncovalent flavin mutant protein of pyranose 2-oxidase reveal insights into the flavin reduction mechanism.

Sucharitakul J, Wongnate T, Chaiyen P.

Biochemistry. 2010 May 4;49(17):3753-65. doi: 10.1021/bi100187b.

PMID:
20359206
13.

Kinetic mechanism of pyranose 2-oxidase from trametes multicolor.

Prongjit M, Sucharitakul J, Wongnate T, Haltrich D, Chaiyen P.

Biochemistry. 2009 May 19;48(19):4170-80. doi: 10.1021/bi802331r.

PMID:
19317444

Supplemental Content

Loading ...
Support Center