Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 35

1.

Ecological Conditions and Molecular Determinants Involved in Agrobacterium Lifestyle in Tumors.

Meyer T, Thiour-Mauprivez C, Wisniewski-Dyé F, Kerzaon I, Comte G, Vial L, Lavire C.

Front Plant Sci. 2019 Jul 30;10:978. doi: 10.3389/fpls.2019.00978. eCollection 2019. Review.

2.

A novel plasmid-transcribed regulatory sRNA, QfsR, controls chromosomal polycistronic gene expression in Agrobacterium fabrum.

Diel B, Dequivre M, Wisniewski-Dyé F, Vial L, Hommais F.

Environ Microbiol. 2019 Aug;21(8):3063-3075. doi: 10.1111/1462-2920.14704. Epub 2019 Jun 21.

PMID:
31170322
3.

A common metabolomic signature is observed upon inoculation of rice roots with various rhizobacteria.

Valette M, Rey M, Gerin F, Comte G, Wisniewski-Dyé F.

J Integr Plant Biol. 2019 Mar 28. doi: 10.1111/jipb.12810. [Epub ahead of print]

PMID:
30920733
4.

Biofilm-Constructing Variants of Paraburkholderia phytofirmans PsJN Outcompete the Wild-Type Form in Free-Living and Static Conditions but Not In Planta.

Rondeau M, Esmaeel Q, Crouzet J, Blin P, Gosselin I, Sarazin C, Pernes M, Beaugrand J, Wisniewski-Dyé F, Vial L, Faure D, Clément C, Ait Barka E, Jacquard C, Sanchez L.

Appl Environ Microbiol. 2019 May 16;85(11). pii: e02670-18. doi: 10.1128/AEM.02670-18. Print 2019 Jun 1.

PMID:
30902863
5.

Bacterial hybrid histidine kinases in plant-bacteria interactions.

Borland S, Prigent-Combaret C, Wisniewski-Dyé F.

Microbiology. 2016 Oct;162(10):1715-1734. doi: 10.1099/mic.0.000370. Epub 2016 Sep 8. Review.

PMID:
27609064
6.

Genome-wide survey of two-component signal transduction systems in the plant growth-promoting bacterium Azospirillum.

Borland S, Oudart A, Prigent-Combaret C, Brochier-Armanet C, Wisniewski-Dyé F.

BMC Genomics. 2015 Oct 22;16:833. doi: 10.1186/s12864-015-1962-x.

7.

Differential responses of Oryza sativa secondary metabolism to biotic interactions with cooperative, commensal and phytopathogenic bacteria.

Chamam A, Wisniewski-Dyé F, Comte G, Bertrand C, Prigent-Combaret C.

Planta. 2015 Dec;242(6):1439-52. doi: 10.1007/s00425-015-2382-5. Epub 2015 Aug 25.

PMID:
26303982
8.

Genome Sequence of Bradyrhizobium japonicum E109, One of the Most Agronomically Used Nitrogen-Fixing Rhizobacteria in Argentina.

Torres D, Revale S, Obando M, Maroniche G, Paris G, Perticari A, Vazquez M, Wisniewski-Dyé F, Martínez-Abarca F, Cassán F.

Genome Announc. 2015 Feb 19;3(1). pii: e01566-14. doi: 10.1128/genomeA.01566-14.

9.

Plant root transcriptome profiling reveals a strain-dependent response during Azospirillum-rice cooperation.

Drogue B, Sanguin H, Chamam A, Mozar M, Llauro C, Panaud O, Prigent-Combaret C, Picault N, Wisniewski-Dyé F.

Front Plant Sci. 2014 Nov 6;5:607. doi: 10.3389/fpls.2014.00607. eCollection 2014.

10.

Complete Genome Sequence of the Model Rhizosphere Strain Azospirillum brasilense Az39, Successfully Applied in Agriculture.

Rivera D, Revale S, Molina R, Gualpa J, Puente M, Maroniche G, Paris G, Baker D, Clavijo B, McLay K, Spaepen S, Perticari A, Vazquez M, Wisniewski-Dyé F, Watkins C, Martínez-Abarca F, Vanderleyden J, Cassán F.

Genome Announc. 2014 Jul 24;2(4). pii: e00683-14. doi: 10.1128/genomeA.00683-14.

11.

Genome wide profiling of Azospirillum lipoferum 4B gene expression during interaction with rice roots.

Drogue B, Sanguin H, Borland S, Prigent-Combaret C, Wisniewski-Dyé F.

FEMS Microbiol Ecol. 2014 Feb;87(2):543-55. doi: 10.1111/1574-6941.12244. Epub 2013 Nov 28.

12.

Plant growth-promoting rhizobacteria and root system functioning.

Vacheron J, Desbrosses G, Bouffaud ML, Touraine B, Moënne-Loccoz Y, Muller D, Legendre L, Wisniewski-Dyé F, Prigent-Combaret C.

Front Plant Sci. 2013 Sep 17;4:356. doi: 10.3389/fpls.2013.00356. Review.

13.

Plant secondary metabolite profiling evidences strain-dependent effect in the Azospirillum-Oryza sativa association.

Chamam A, Sanguin H, Bellvert F, Meiffren G, Comte G, Wisniewski-Dyé F, Bertrand C, Prigent-Combaret C.

Phytochemistry. 2013 Mar;87:65-77. doi: 10.1016/j.phytochem.2012.11.009. Epub 2012 Dec 22.

PMID:
23266268
14.

Which specificity in cooperation between phytostimulating rhizobacteria and plants?

Drogue B, Doré H, Borland S, Wisniewski-Dyé F, Prigent-Combaret C.

Res Microbiol. 2012 Sep-Oct;163(8):500-10. doi: 10.1016/j.resmic.2012.08.006. Epub 2012 Sep 7. Review.

PMID:
22989671
15.

Insights into the 1.59-Mbp largest plasmid of Azospirillum brasilense CBG497.

Acosta-Cruz E, Wisniewski-Dyé F, Rouy Z, Barbe V, Valdés M, Mavingui P.

Arch Microbiol. 2012 Sep;194(9):725-36. doi: 10.1007/s00203-012-0805-2. Epub 2012 Apr 6.

PMID:
22481309
16.

Whole-genome sequence of Wolbachia strain wAlbB, an endosymbiont of tiger mosquito vector Aedes albopictus.

Mavingui P, Valiente Moro C, Tran-Van V, Wisniewski-Dyé F, Raquin V, Minard G, Tran FH, Voronin D, Rouy Z, Bustos P, Lozano L, Barbe V, González V.

J Bacteriol. 2012 Apr;194(7):1840. doi: 10.1128/JB.00036-12.

17.

Azospirillum genomes reveal transition of bacteria from aquatic to terrestrial environments.

Wisniewski-Dyé F, Borziak K, Khalsa-Moyers G, Alexandre G, Sukharnikov LO, Wuichet K, Hurst GB, McDonald WH, Robertson JS, Barbe V, Calteau A, Rouy Z, Mangenot S, Prigent-Combaret C, Normand P, Boyer M, Siguier P, Dessaux Y, Elmerich C, Condemine G, Krishnen G, Kennedy I, Paterson AH, González V, Mavingui P, Zhulin IB.

PLoS Genet. 2011 Dec;7(12):e1002430. doi: 10.1371/journal.pgen.1002430. Epub 2011 Dec 22.

18.

Genome Sequence of Azospirillum brasilense CBG497 and Comparative Analyses of Azospirillum Core and Accessory Genomes provide Insight into Niche Adaptation.

Wisniewski-Dyé F, Lozano L, Acosta-Cruz E, Borland S, Drogue B, Prigent-Combaret C, Rouy Z, Barbe V, Herrera AM, González V, Mavingui P.

Genes (Basel). 2012 Sep 28;3(4):576-602. doi: 10.3390/genes3040576.

19.

Cell-cell signalling in bacteria: not simply a matter of quorum.

Boyer M, Wisniewski-Dyé F.

FEMS Microbiol Ecol. 2009 Oct;70(1):1-19. doi: 10.1111/j.1574-6941.2009.00745.x. Epub 2009 Jul 21. Review.

20.

The cin and rai quorum-sensing regulatory systems in Rhizobium leguminosarum are coordinated by ExpR and CinS, a small regulatory protein coexpressed with CinI.

Edwards A, Frederix M, Wisniewski-Dyé F, Jones J, Zorreguieta A, Downie JA.

J Bacteriol. 2009 May;191(9):3059-67. doi: 10.1128/JB.01650-08. Epub 2009 Mar 6.

21.

A quorum-quenching approach to identify quorum-sensing-regulated functions in Azospirillum lipoferum.

Boyer M, Bally R, Perrotto S, Chaintreuil C, Wisniewski-Dyé F.

Res Microbiol. 2008 Nov-Dec;159(9-10):699-708. doi: 10.1016/j.resmic.2008.08.003. Epub 2008 Aug 26.

PMID:
18790051
22.

Phase and antigenic variation mediated by genome modifications.

Wisniewski-Dyé F, Vial L.

Antonie Van Leeuwenhoek. 2008 Nov;94(4):493-515. doi: 10.1007/s10482-008-9267-6. Epub 2008 Jul 29. Review.

PMID:
18663597
23.

Duplication of plasmid-borne nitrite reductase gene nirK in the wheat-associated plant growth-promoting rhizobacterium Azospirillum brasilense Sp245.

Pothier JF, Prigent-Combaret C, Haurat J, Moënne-Loccoz Y, Wisniewski-Dyé F.

Mol Plant Microbe Interact. 2008 Jun;21(6):831-42. doi: 10.1094/MPMI-21-6-0831.

24.

Physical organization and phylogenetic analysis of acdR as leucine-responsive regulator of the 1-aminocyclopropane-1-carboxylate deaminase gene acdS in phytobeneficial Azospirillum lipoferum 4B and other Proteobacteria.

Prigent-Combaret C, Blaha D, Pothier JF, Vial L, Poirier MA, Wisniewski-Dyé F, Moënne-Loccoz Y.

FEMS Microbiol Ecol. 2008 Aug;65(2):202-19. doi: 10.1111/j.1574-6941.2008.00474.x. Epub 2008 Apr 9.

25.

Bacteriophage prevalence in the genus Azospirillum and analysis of the first genome sequence of an Azospirillum brasilense integrative phage.

Boyer M, Haurat J, Samain S, Segurens B, Gavory F, González V, Mavingui P, Rohr R, Bally R, Wisniewski-Dyé F.

Appl Environ Microbiol. 2008 Feb;74(3):861-74. Epub 2007 Dec 7.

26.

Promoter-trap identification of wheat seed extract-induced genes in the plant-growth-promoting rhizobacterium Azospirillum brasilense Sp245.

Pothier JF, Wisniewski-Dyé F, Weiss-Gayet M, Moënne-Loccoz Y, Prigent-Combaret C.

Microbiology. 2007 Oct;153(Pt 10):3608-22.

PMID:
17906157
27.

N-acyl-homoserine lactone-mediated quorum-sensing in Azospirillum: an exception rather than a rule.

Vial L, Cuny C, Gluchoff-Fiasson K, Comte G, Oger PM, Faure D, Dessaux Y, Bally R, Wisniewski-Dyé F.

FEMS Microbiol Ecol. 2006 Nov;58(2):155-68.

28.

Phase variation and genomic architecture changes in Azospirillum.

Vial L, Lavire C, Mavingui P, Blaha D, Haurat J, Moënne-Loccoz Y, Bally R, Wisniewski-Dyé F.

J Bacteriol. 2006 Aug;188(15):5364-73.

29.

Construction of a recA mutant of Azospirillum lipoferum and involvement of recA in phase variation.

Vial L, Pothier JF, Normand P, Moënne-Loccoz Y, Bally R, Wisniewski-Dyé F.

FEMS Microbiol Lett. 2004 Jul 15;236(2):291-9.

30.

Quorum-sensing in Rhizobium.

Wisniewski-Dyé F, Downie JA.

Antonie Van Leeuwenhoek. 2002 Aug;81(1-4):397-407. Review.

PMID:
12448738
31.

N-acyl-homoserine lactone inhibition of rhizobial growth is mediated by two quorum-sensing genes that regulate plasmid transfer.

Wilkinson A, Danino V, Wisniewski-Dyé F, Lithgow JK, Downie JA.

J Bacteriol. 2002 Aug;184(16):4510-9.

32.

raiIR genes are part of a quorum-sensing network controlled by cinI and cinR in Rhizobium leguminosarum.

Wisniewski-Dyé F, Jones J, Chhabra SR, Downie JA.

J Bacteriol. 2002 Mar;184(6):1597-606.

33.

The regulatory locus cinRI in Rhizobium leguminosarum controls a network of quorum-sensing loci.

Lithgow JK, Wilkinson A, Hardman A, Rodelas B, Wisniewski-Dyé F, Williams P, Downie JA.

Mol Microbiol. 2000 Jul;37(1):81-97.

34.
35.

Analysis of quorum-sensing-dependent control of rhizosphere-expressed (rhi) genes in Rhizobium leguminosarum bv. viciae.

Rodelas B, Lithgow JK, Wisniewski-Dye F, Hardman A, Wilkinson A, Economou A, Williams P, Downie JA.

J Bacteriol. 1999 Jun;181(12):3816-23.

Supplemental Content

Loading ...
Support Center