Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 95

1.

The origin of heterogeneous nanoparticle uptake by cells.

Rees P, Wills JW, Brown MR, Barnes CM, Summers HD.

Nat Commun. 2019 May 28;10(1):2341. doi: 10.1038/s41467-019-10112-4.

2.

Differential Requirements for gE, gI, and UL16 among Herpes Simplex Virus 1 Syncytial Variants Suggest Unique Modes of Dysregulating the Mechanism of Cell-to-Cell Spread.

Carmichael JC, Wills JW.

J Virol. 2019 Jul 17;93(15). pii: e00494-19. doi: 10.1128/JVI.00494-19. Print 2019 Aug 1.

PMID:
31092572
3.

In vitro detection of in vitro secondary mechanisms of genotoxicity induced by engineered nanomaterials.

Evans SJ, Clift MJD, Singh N, Wills JW, Hondow N, Wilkinson TS, Burgum MJ, Brown AP, Jenkins GJ, Doak SH.

Part Fibre Toxicol. 2019 Feb 13;16(1):8. doi: 10.1186/s12989-019-0291-7.

4.

Glycoprotein D of HSV-1 is dependent on tegument protein UL16 for packaging and contains a motif that is differentially required for syncytia formation.

Carmichael JC, Starkey J, Zhang D, Sarfo A, Chadha P, Wills JW, Han J.

Virology. 2019 Jan 15;527:64-76. doi: 10.1016/j.virol.2018.09.018. Epub 2018 Nov 19.

PMID:
30465930
5.

Investigating FlowSight® imaging flow cytometry as a platform to assess chemically induced micronuclei using human lymphoblastoid cells in vitro.

Verma JR, Harte DSG, Shah UK, Summers H, Thornton CA, Doak SH, Jenkins GJS, Rees P, Wills JW, Johnson GE.

Mutagenesis. 2018 Oct 11;33(4):283-289. doi: 10.1093/mutage/gey021.

PMID:
30204902
6.

The HSV-1 mechanisms of cell-to-cell spread and fusion are critically dependent on host PTP1B.

Carmichael JC, Yokota H, Craven RC, Schmitt A, Wills JW.

PLoS Pathog. 2018 May 9;14(5):e1007054. doi: 10.1371/journal.ppat.1007054. eCollection 2018 May.

7.

Benchmark dose analyses of multiple genetic toxicity endpoints permit robust, cross-tissue comparisons of MutaMouse responses to orally delivered benzo[a]pyrene.

Long AS, Wills JW, Krolak D, Guo M, Dertinger SD, Arlt VM, White PA.

Arch Toxicol. 2018 Feb;92(2):967-982. doi: 10.1007/s00204-017-2099-2. Epub 2017 Nov 24.

8.

Characterizing Nanoparticles in Biological Matrices: Tipping Points in Agglomeration State and Cellular Delivery In Vitro.

Wills JW, Summers HD, Hondow N, Sooresh A, Meissner KE, White PA, Rees P, Brown A, Doak SH.

ACS Nano. 2017 Dec 26;11(12):11986-12000. doi: 10.1021/acsnano.7b03708. Epub 2017 Nov 1.

9.

Integration of the TGx-28.65 genomic biomarker with the flow cytometry micronucleus test to assess the genotoxicity of disperse orange and 1,2,4-benzenetriol in human TK6 cells.

Buick JK, Williams A, Kuo B, Wills JW, Swartz CD, Recio L, Li HH, Fornace AJ Jr, Aubrecht J, Yauk CL.

Mutat Res. 2017 Dec;806:51-62. doi: 10.1016/j.mrfmmm.2017.09.002. Epub 2017 Sep 13.

PMID:
29017062
10.

Comparing BMD-derived genotoxic potency estimations across variants of the transgenic rodent gene mutation assay.

Wills JW, Johnson GE, Battaion HL, Slob W, White PA.

Environ Mol Mutagen. 2017 Dec;58(9):632-643. doi: 10.1002/em.22137. Epub 2017 Sep 25.

11.

The UL21 Tegument Protein of Herpes Simplex Virus 1 Is Differentially Required for the Syncytial Phenotype.

Sarfo A, Starkey J, Mellinger E, Zhang D, Chadha P, Carmichael J, Wills JW.

J Virol. 2017 Oct 13;91(21). pii: e01161-17. doi: 10.1128/JVI.01161-17. Print 2017 Nov 1.

12.

Domain Interaction Studies of Herpes Simplex Virus 1 Tegument Protein UL16 Reveal Its Interaction with Mitochondria.

Chadha P, Sarfo A, Zhang D, Abraham T, Carmichael J, Han J, Wills JW.

J Virol. 2017 Jan 3;91(2). pii: e01995-16. doi: 10.1128/JVI.01995-16. Print 2017 Jan 15.

13.

Critical review of the current and future challenges associated with advanced in vitro systems towards the study of nanoparticle (secondary) genotoxicity.

Evans SJ, Clift MJ, Singh N, de Oliveira Mallia J, Burgum M, Wills JW, Wilkinson TS, Jenkins GJ, Doak SH.

Mutagenesis. 2017 Jan;32(1):233-241. doi: 10.1093/mutage/gew054. Epub 2016 Nov 4. Review.

14.

Genetic toxicity assessment of engineered nanoparticles using a 3D in vitro skin model (EpiDerm™).

Wills JW, Hondow N, Thomas AD, Chapman KE, Fish D, Maffeis TG, Penny MW, Brown RA, Jenkins GJ, Brown AP, White PA, Doak SH.

Part Fibre Toxicol. 2016 Sep 9;13(1):50. doi: 10.1186/s12989-016-0161-5.

15.

An Analysis of the Practicalities of Multi-Color Nanoparticle Cellular Bar-Coding.

Rees P, Brown MR, Wills JW, Summers H.

Comb Chem High Throughput Screen. 2016;19(5):362-9.

PMID:
27055751
16.

Empirical analysis of BMD metrics in genetic toxicology part II: in vivo potency comparisons to promote reductions in the use of experimental animals for genetic toxicity assessment.

Wills JW, Long AS, Johnson GE, Bemis JC, Dertinger SD, Slob W, White PA.

Mutagenesis. 2016 May;31(3):265-75. doi: 10.1093/mutage/gew009. Epub 2016 Mar 16.

PMID:
26984301
17.

Empirical analysis of BMD metrics in genetic toxicology part I: in vitro analyses to provide robust potency rankings and support MOA determinations.

Wills JW, Johnson GE, Doak SH, Soeteman-Hernández LG, Slob W, White PA.

Mutagenesis. 2016 May;31(3):255-63. doi: 10.1093/mutage/gev085. Epub 2015 Dec 19.

PMID:
26687511
18.

Comparison of in vitro and in vivo clastogenic potency based on benchmark dose analysis of flow cytometric micronucleus data.

Bemis JC, Wills JW, Bryce SM, Torous DK, Dertinger SD, Slob W.

Mutagenesis. 2016 May;31(3):277-85. doi: 10.1093/mutage/gev041. Epub 2015 Jun 6.

19.

Poisson-event-based analysis of cell proliferation.

Summers HD, Wills JW, Brown MR, Rees P.

Cytometry A. 2015 May;87(5):385-92. doi: 10.1002/cyto.a.22620. Epub 2015 Jan 8.

20.

Nanoparticle vesicle encoding for imaging and tracking cell populations.

Rees P, Wills JW, Brown MR, Tonkin J, Holton MD, Hondow N, Brown AP, Brydson R, Millar V, Carpenter AE, Summers HD.

Nat Methods. 2014 Nov;11(11):1177-81. doi: 10.1038/nmeth.3105. Epub 2014 Sep 14.

PMID:
25218182
21.

Automation and validation of micronucleus detection in the 3D EpiDerm™ human reconstructed skin assay and correlation with 2D dose responses.

Chapman KE, Thomas AD, Wills JW, Pfuhler S, Doak SH, Jenkins GJ.

Mutagenesis. 2014 May;29(3):165-75. doi: 10.1093/mutage/geu011. Epub 2014 Mar 27.

22.

Elucidation of the block to herpes simplex virus egress in the absence of tegument protein UL16 reveals a novel interaction with VP22.

Starkey JL, Han J, Chadha P, Marsh JA, Wills JW.

J Virol. 2014 Jan;88(1):110-9. doi: 10.1128/JVI.02555-13. Epub 2013 Oct 16.

23.

Function of glycoprotein E of herpes simplex virus requires coordinated assembly of three tegument proteins on its cytoplasmic tail.

Han J, Chadha P, Starkey JL, Wills JW.

Proc Natl Acad Sci U S A. 2012 Nov 27;109(48):19798-803. doi: 10.1073/pnas.1212900109. Epub 2012 Nov 12.

24.

Regulated interaction of tegument proteins UL16 and UL11 from herpes simplex virus.

Chadha P, Han J, Starkey JL, Wills JW.

J Virol. 2012 Nov;86(21):11886-98. doi: 10.1128/JVI.01879-12. Epub 2012 Aug 22.

25.

Direct and specific binding of the UL16 tegument protein of herpes simplex virus to the cytoplasmic tail of glycoprotein E.

Yeh PC, Han J, Chadha P, Meckes DG Jr, Ward MD, Semmes OJ, Wills JW.

J Virol. 2011 Sep;85(18):9425-36. doi: 10.1128/JVI.05178-11. Epub 2011 Jul 6.

26.

Interaction and interdependent packaging of tegument protein UL11 and glycoprotein e of herpes simplex virus.

Han J, Chadha P, Meckes DG Jr, Baird NL, Wills JW.

J Virol. 2011 Sep;85(18):9437-46. doi: 10.1128/JVI.05207-11. Epub 2011 Jul 6.

27.

Synthesis, Assembly, and Processing of Viral Proteins.

Swanstrom R, Wills JW.

In: Coffin JM, Hughes SH, Varmus HE, editors. Retroviruses. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press; 1997.

28.

Complex mechanisms for the packaging of the UL16 tegument protein into herpes simplex virus.

Meckes DG Jr, Marsh JA, Wills JW.

Virology. 2010 Mar 15;398(2):208-13. doi: 10.1016/j.virol.2009.12.004. Epub 2010 Jan 3.

29.

Interaction domains of the UL16 and UL21 tegument proteins of herpes simplex virus.

Harper AL, Meckes DG Jr, Marsh JA, Ward MD, Yeh PC, Baird NL, Wilson CB, Semmes OJ, Wills JW.

J Virol. 2010 Mar;84(6):2963-71. doi: 10.1128/JVI.02015-09. Epub 2009 Dec 30.

30.

Myristylation and palmitylation of HSV-1 UL11 are not essential for its function.

Baird NL, Starkey JL, Hughes DJ, Wills JW.

Virology. 2010 Feb 5;397(1):80-8. doi: 10.1016/j.virol.2009.10.046. Epub 2009 Nov 26.

31.

Structural rearrangement within an enveloped virus upon binding to the host cell.

Meckes DG Jr, Wills JW.

J Virol. 2008 Nov;82(21):10429-35. doi: 10.1128/JVI.01223-08. Epub 2008 Aug 20.

32.

Analysis of the interaction between the UL11 and UL16 tegument proteins of herpes simplex virus.

Yeh PC, Meckes DG Jr, Wills JW.

J Virol. 2008 Nov;82(21):10693-700. doi: 10.1128/JVI.01230-08. Epub 2008 Aug 20.

33.

Sequences in the UL11 tegument protein of herpes simplex virus that control association with detergent-resistant membranes.

Baird NL, Yeh PC, Courtney RJ, Wills JW.

Virology. 2008 May 10;374(2):315-21. doi: 10.1016/j.virol.2008.01.007. Epub 2008 Feb 7.

34.

Incorporation of the herpes simplex virus type 1 tegument protein VP22 into the virus particle is independent of interaction with VP16.

O'Regan KJ, Murphy MA, Bucks MA, Wills JW, Courtney RJ.

Virology. 2007 Dec 20;369(2):263-80. Epub 2007 Sep 20.

35.

Dynamic interactions of the UL16 tegument protein with the capsid of herpes simplex virus.

Meckes DG Jr, Wills JW.

J Virol. 2007 Dec;81(23):13028-36. Epub 2007 Sep 12.

36.

Herpes simplex virus type 1 tegument proteins VP1/2 and UL37 are associated with intranuclear capsids.

Bucks MA, O'Regan KJ, Murphy MA, Wills JW, Courtney RJ.

Virology. 2007 May 10;361(2):316-24. Epub 2007 Jan 16.

37.

Genetic Studies of the beta-hairpin loop of Rous sarcoma virus capsid protein.

Spidel JL, Wilson CB, Craven RC, Wills JW.

J Virol. 2007 Feb;81(3):1288-96. Epub 2006 Nov 8.

38.

A conserved region of the herpes simplex virus type 1 tegument protein VP22 facilitates interaction with the cytoplasmic tail of glycoprotein E (gE).

O'Regan KJ, Bucks MA, Murphy MA, Wills JW, Courtney RJ.

Virology. 2007 Feb 5;358(1):192-200. Epub 2006 Sep 25.

39.

Packaging determinants in the UL11 tegument protein of herpes simplex virus type 1.

Loomis JS, Courtney RJ, Wills JW.

J Virol. 2006 Nov;80(21):10534-41. Epub 2006 Aug 23.

40.

The C-terminal half of TSG101 blocks Rous sarcoma virus budding and sequesters Gag into unique nonendosomal structures.

Johnson MC, Spidel JL, Ako-Adjei D, Wills JW, Vogt VM.

J Virol. 2005 Mar;79(6):3775-86.

41.

Lysines close to the Rous sarcoma virus late domain critical for budding.

Spidel JL, Craven RC, Wilson CB, Patnaik A, Wang H, Mansky LM, Wills JW.

J Virol. 2004 Oct;78(19):10606-16.

42.

Binding partners for the UL11 tegument protein of herpes simplex virus type 1.

Loomis JS, Courtney RJ, Wills JW.

J Virol. 2003 Nov;77(21):11417-24.

43.

Link between genome packaging and rate of budding for Rous sarcoma virus.

Callahan EM, Wills JW.

J Virol. 2003 Sep;77(17):9388-98.

44.

Membrane association of VP22, a herpes simplex virus type 1 tegument protein.

Brignati MJ, Loomis JS, Wills JW, Courtney RJ.

J Virol. 2003 Apr;77(8):4888-98.

45.
46.

Budding of equine infectious anemia virus is insensitive to proteasome inhibitors.

Patnaik A, Chau V, Li F, Montelaro RC, Wills JW.

J Virol. 2002 Mar;76(6):2641-7.

47.

Intracellular trafficking of the UL11 tegument protein of herpes simplex virus type 1.

Loomis JS, Bowzard JB, Courtney RJ, Wills JW.

J Virol. 2001 Dec;75(24):12209-19.

48.
49.
50.

Ubiquitin is part of the retrovirus budding machinery.

Patnaik A, Chau V, Wills JW.

Proc Natl Acad Sci U S A. 2000 Nov 21;97(24):13069-74.

Supplemental Content

Loading ...
Support Center