Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 52

1.

Testing the "Fasting While Foraging" Hypothesis: Effects of Recent Feeding on Plasma Metabolite Concentrations in Little Brown Bats (Myotis lucifugus).

Baloun DE, Webber QMR, McGuire LP, Boyles JG, Shrivastav A, Willis CKR.

Physiol Biochem Zool. 2019 Jul/Aug;92(4):373-380. doi: 10.1086/704080.

PMID:
31120325
2.

An experimental test of energy and electrolyte supplementation as a mitigation strategy for white-nose syndrome.

McGuire LP, Mayberry HW, Fletcher QE, Willis CKR.

Conserv Physiol. 2019 Feb 20;7(1):coz006. doi: 10.1093/conphys/coz006. eCollection 2019.

3.

Higher fat stores contribute to persistence of little brown bat populations with white-nose syndrome.

Cheng TL, Gerson A, Moore MS, Reichard JD, DeSimone J, Willis CKR, Frick WF, Kilpatrick AM.

J Anim Ecol. 2019 Apr;88(4):591-600. doi: 10.1111/1365-2656.12954. Epub 2019 Feb 18.

PMID:
30779125
4.

White-nose syndrome is associated with increased replication of a naturally persisting coronaviruses in bats.

Davy CM, Donaldson ME, Subudhi S, Rapin N, Warnecke L, Turner JM, Bollinger TK, Kyle CJ, Dorville NAS, Kunkel EL, Norquay KJO, Dzal YA, Willis CKR, Misra V.

Sci Rep. 2018 Oct 19;8(1):15508. doi: 10.1038/s41598-018-33975-x.

5.

Environmentally persistent pathogens present unique challenges for studies of host-pathogen interactions: Reply to Field (2018).

Davy CM, Donaldson ME, Willis CKR, Saville BJ, McGuire LP, Mayberry H, Wilcox A, Wibbelt G, Misra V, Kyle CJ.

Ecol Evol. 2018 May 8;8(11):5238-5241. doi: 10.1002/ece3.4035. eCollection 2018 Jun.

6.

Stress-induced changes in body temperature of silver-haired bats (Lasionycteris noctivagans).

Muise KA, Menzies AK, Willis CKR.

Physiol Behav. 2018 Oct 1;194:356-361. doi: 10.1016/j.physbeh.2018.06.003. Epub 2018 Jun 9.

PMID:
29894759
7.

An experimental test of effects of ambient temperature and roost quality on aggregation by little brown bats (Myotis lucifugus).

Webber QMR, Willis CKR.

J Therm Biol. 2018 May;74:174-180. doi: 10.1016/j.jtherbio.2018.03.023. Epub 2018 Mar 23.

PMID:
29801624
8.

Opening the file drawer: Unexpected insights from a chytrid infection experiment.

Byrne AQ, Poorten TJ, Voyles J, Willis CKR, Rosenblum EB.

PLoS One. 2018 May 9;13(5):e0196851. doi: 10.1371/journal.pone.0196851. eCollection 2018.

9.

Growth medium and incubation temperature alter the Pseudogymnoascus destructans transcriptome: implications in identifying virulence factors.

Donaldson ME, Davy CM, Vanderwolf KJ, Willis CKR, Saville BJ, Kyle CJ.

Mycologia. 2018 Mar-Apr;110(2):300-315. doi: 10.1080/00275514.2018.1438223. Epub 2018 May 8.

PMID:
29737946
10.

Isolation, characterization and prevalence of a novel Gammaherpesvirus in Eptesicus fuscus, the North American big brown bat.

Subudhi S, Rapin N, Dorville N, Hill JE, Town J, Willis CKR, Bollinger TK, Misra V.

Virology. 2018 Mar;516:227-238. doi: 10.1016/j.virol.2018.01.024.

11.

Profiling the immunome of little brown myotis provides a yardstick for measuring the genetic response to white-nose syndrome.

Donaldson ME, Davy CM, Willis CKR, McBurney S, Park A, Kyle CJ.

Evol Appl. 2017 Sep 3;10(10):1076-1090. doi: 10.1111/eva.12514. eCollection 2017 Dec.

12.

Viral Richness is Positively Related to Group Size, but Not Mating System, in Bats.

Webber QMR, Fletcher QE, Willis CKR.

Ecohealth. 2017 Dec;14(4):652-661. doi: 10.1007/s10393-017-1276-3. Epub 2017 Oct 13.

PMID:
29030788
13.

Trade-offs Influencing the Physiological Ecology of Hibernation in Temperate-Zone Bats.

Willis CKR.

Integr Comp Biol. 2017 Dec 1;57(6):1214-1224. doi: 10.1093/icb/icx087. Review.

PMID:
28985332
14.

The other white-nose syndrome transcriptome: Tolerant and susceptible hosts respond differently to the pathogen Pseudogymnoascus destructans.

Davy CM, Donaldson ME, Willis CKR, Saville BJ, McGuire LP, Mayberry H, Wilcox A, Wibbelt G, Misra V, Bollinger T, Kyle CJ.

Ecol Evol. 2017 Aug 2;7(18):7161-7170. doi: 10.1002/ece3.3234. eCollection 2017 Sep.

15.

Enrichment of beneficial bacteria in the skin microbiota of bats persisting with white-nose syndrome.

Lemieux-Labonté V, Simard A, Willis CKR, Lapointe FJ.

Microbiome. 2017 Sep 5;5(1):115. doi: 10.1186/s40168-017-0334-y.

16.

A persistently infecting coronavirus in hibernating Myotis lucifugus, the North American little brown bat.

Subudhi S, Rapin N, Bollinger TK, Hill JE, Donaldson ME, Davy CM, Warnecke L, Turner JM, Kyle CJ, Willis CKR, Misra V.

J Gen Virol. 2017 Sep;98(9):2297-2309. doi: 10.1099/jgv.0.000898. Epub 2017 Aug 25.

PMID:
28840816
17.

White-nose syndrome increases torpid metabolic rate and evaporative water loss in hibernating bats.

McGuire LP, Mayberry HW, Willis CKR.

Am J Physiol Regul Integr Comp Physiol. 2017 Dec 1;313(6):R680-R686. doi: 10.1152/ajpregu.00058.2017. Epub 2017 Aug 23.

18.

Body temperatures of hibernating little brown bats reveal pronounced behavioural activity during deep torpor and suggest a fever response during white-nose syndrome.

Mayberry HW, McGuire LP, Willis CKR.

J Comp Physiol B. 2018 Mar;188(2):333-343. doi: 10.1007/s00360-017-1119-0. Epub 2017 Aug 1.

PMID:
28766065
19.

Fungus Causing White-Nose Syndrome in Bats Accumulates Genetic Variability in North America with No Sign of Recombination.

Trivedi J, Lachapelle J, Vanderwolf KJ, Misra V, Willis CKR, Ratcliffe JM, Ness RW, Anderson JB, Kohn LM.

mSphere. 2017 Jul 12;2(4). pii: e00271-17. doi: 10.1128/mSphereDirect.00271-17. eCollection 2017 Jul-Aug.

20.

Thrifty Females, Frisky Males: Winter Energetics of Hibernating Bats from a Cold Climate.

Czenze ZJ, Jonasson KA, Willis CKR.

Physiol Biochem Zool. 2017 Jul/Aug;90(4):502-511. doi: 10.1086/692623.

PMID:
28641050
21.

Conservation implications of physiological carry-over effects in bats recovering from white-nose syndrome.

Davy CM, Mastromonaco GF, Riley JL, Baxter-Gilbert JH, Mayberry H, Willis CKR.

Conserv Biol. 2017 Jun;31(3):615-624. doi: 10.1111/cobi.12841. Epub 2016 Dec 5.

PMID:
27641049
22.

Success stories and emerging themes in conservation physiology.

Madliger CL, Cooke SJ, Crespi EJ, Funk JL, Hultine KR, Hunt KE, Rohr JR, Sinclair BJ, Suski CD, Willis CK, Love OP.

Conserv Physiol. 2016 Jan 5;4(1):cov057. doi: 10.1093/conphys/cov057. eCollection 2016.

23.

Metabolic rate, latitude and thermal stability of roosts, but not phylogeny, affect rewarming rates of bats.

Menzies AK, Webber QM, Baloun DE, McGuire LP, Muise KA, Coté D, Tinkler S, Willis CK.

Physiol Behav. 2016 Oct 1;164(Pt A):361-8. doi: 10.1016/j.physbeh.2016.06.015. Epub 2016 Jun 16.

PMID:
27317837
24.

Energetic benefits of enhanced summer roosting habitat for little brown bats (Myotis lucifugus) recovering from white-nose syndrome.

Wilcox A, Willis CK.

Conserv Physiol. 2016 Feb 26;4(1):cov070. doi: 10.1093/conphys/cov070. eCollection 2016.

25.

White-Nose Syndrome Disease Severity and a Comparison of Diagnostic Methods.

McGuire LP, Turner JM, Warnecke L, McGregor G, Bollinger TK, Misra V, Foster JT, Frick WF, Kilpatrick AM, Willis CK.

Ecohealth. 2016 Mar;13(1):60-71. doi: 10.1007/s10393-016-1107-y. Epub 2016 Mar 8.

PMID:
26957435
26.

Conservation Physiology and Conservation Pathogens: White-Nose Syndrome and Integrative Biology for Host-Pathogen Systems.

Willis CK.

Integr Comp Biol. 2015 Oct;55(4):631-41. doi: 10.1093/icb/icv099. Epub 2015 Aug 24. Review.

PMID:
26307096
27.

Host demographic predicts ectoparasite dynamics for a colonial host during pre-hibernation mating.

Webber QM, Czenze ZJ, Willis CK.

Parasitology. 2015 Sep;142(10):1260-9. doi: 10.1017/S0031182015000542. Epub 2015 Jun 10.

PMID:
26059507
28.

Glycerophospholipid Profiles of Bats with White-Nose Syndrome.

Pannkuk EL, McGuire LP, Warnecke L, Turner JM, Willis CK, Risch TS.

Physiol Biochem Zool. 2015 Jul-Aug;88(4):425-32. doi: 10.1086/681931. Epub 2015 May 7.

29.

Warming up and shipping out: arousal and emergence timing in hibernating little brown bats (Myotis lucifugus).

Czenze ZJ, Willis CK.

J Comp Physiol B. 2015 Jul;185(5):575-86. doi: 10.1007/s00360-015-0900-1. Epub 2015 Mar 26.

PMID:
25809999
30.

Conspecific disturbance contributes to altered hibernation patterns in bats with white-nose syndrome.

Turner JM, Warnecke L, Wilcox A, Baloun D, Bollinger TK, Misra V, Willis CK.

Physiol Behav. 2015 Mar 1;140:71-8. doi: 10.1016/j.physbeh.2014.12.013. Epub 2014 Dec 4.

PMID:
25484358
31.

Activation of innate immune-response genes in little brown bats (Myotis lucifugus) infected with the fungus Pseudogymnoascus destructans.

Rapin N, Johns K, Martin L, Warnecke L, Turner JM, Bollinger TK, Willis CK, Voyles J, Misra V.

PLoS One. 2014 Nov 12;9(11):e112285. doi: 10.1371/journal.pone.0112285. eCollection 2014.

32.

Huddling reduces evaporative water loss in torpid Natterer's bats, Myotis nattereri.

Boratyński JS, Willis CK, Jefimow M, Wojciechowski MS.

Comp Biochem Physiol A Mol Integr Physiol. 2015 Jan;179:125-32. doi: 10.1016/j.cbpa.2014.09.035. Epub 2014 Oct 5.

PMID:
25289993
33.

Moving Beyond Too Little, Too Late: Managing Emerging Infectious Diseases in Wild Populations Requires International Policy and Partnerships.

Voyles J, Kilpatrick AM, Collins JP, Fisher MC, Frick WF, McCallum H, Willis CK, Blehert DS, Murray KA, Puschendorf R, Rosenblum EB, Bolker BM, Cheng TL, Langwig KE, Lindner DL, Toothman M, Wilber MQ, Briggs CJ.

Ecohealth. 2015 Sep;12(3):404-7. doi: 10.1007/s10393-014-0980-5. Epub 2014 Oct 7. No abstract available.

PMID:
25287279
34.

Hormones and hibernation: possible links between hormone systems, winter energy balance and white-nose syndrome in bats.

Willis CK, Wilcox A.

Horm Behav. 2014 Jun;66(1):66-73. doi: 10.1016/j.yhbeh.2014.04.009. Epub 2014 Apr 23.

PMID:
24768718
35.

Personality variation in little brown bats.

Menzies AK, Timonin ME, McGuire LP, Willis CK.

PLoS One. 2013 Nov 27;8(11):e80230. doi: 10.1371/journal.pone.0080230. eCollection 2013.

36.

The diet of Myotis lucifugus across Canada: assessing foraging quality and diet variability.

Clare EL, Symondson WO, Broders H, Fabianek F, Fraser EE, MacKenzie A, Boughen A, Hamilton R, Willis CK, Martinez-Nuñez F, Menzies AK, Norquay KJ, Brigham M, Poissant J, Rintoul J, Barclay RM, Reimer JP.

Mol Ecol. 2014 Aug;23(15):3618-32. doi: 10.1111/mec.12542. Epub 2013 Nov 26.

PMID:
24274182
37.

Pathophysiology of white-nose syndrome in bats: a mechanistic model linking wing damage to mortality.

Warnecke L, Turner JM, Bollinger TK, Misra V, Cryan PM, Blehert DS, Wibbelt G, Willis CK.

Biol Lett. 2013 May 29;9(4):20130177. doi: 10.1098/rsbl.2013.0177. Print 2013 Aug 23.

38.

Staying cold through dinner: cold-climate bats rewarm with conspecifics but not sunset during hibernation.

Czenze ZJ, Park AD, Willis CK.

J Comp Physiol B. 2013 Aug;183(6):859-66. doi: 10.1007/s00360-013-0753-4. Epub 2013 Mar 29.

PMID:
23539327
39.

A comparison of bats and rodents as reservoirs of zoonotic viruses: are bats special?

Luis AD, Hayman DT, O'Shea TJ, Cryan PM, Gilbert AT, Pulliam JR, Mills JN, Timonin ME, Willis CK, Cunningham AA, Fooks AR, Rupprecht CE, Wood JL, Webb CT.

Proc Biol Sci. 2013 Feb 1;280(1756):20122753. doi: 10.1098/rspb.2012.2753. Print 2013 Apr 7.

40.

Evidence of late-summer mating readiness and early sexual maturation in migratory tree-roosting bats found dead at wind turbines.

Cryan PM, Jameson JW, Baerwald EF, Willis CK, Barclay RM, Snider EA, Crichton EG.

PLoS One. 2012;7(10):e47586. doi: 10.1371/journal.pone.0047586. Epub 2012 Oct 19.

41.

Hibernation energetics of free-ranging little brown bats.

Jonasson KA, Willis CK.

J Exp Biol. 2012 Jun 15;215(Pt 12):2141-9. doi: 10.1242/jeb.066514.

42.

Inoculation of bats with European Geomyces destructans supports the novel pathogen hypothesis for the origin of white-nose syndrome.

Warnecke L, Turner JM, Bollinger TK, Lorch JM, Misra V, Cryan PM, Wibbelt G, Blehert DS, Willis CK.

Proc Natl Acad Sci U S A. 2012 May 1;109(18):6999-7003. doi: 10.1073/pnas.1200374109. Epub 2012 Apr 9.

43.

Evaporative water loss is a plausible explanation for mortality of bats from white-nose syndrome.

Willis CK, Menzies AK, Boyles JG, Wojciechowski MS.

Integr Comp Biol. 2011 Sep;51(3):364-73. doi: 10.1093/icb/icr076. Epub 2011 Jul 8.

PMID:
21742778
44.
45.

Feasting, fasting and freezing: energetic effects of meal size and temperature on torpor expression by little brown bats Myotis lucifugus.

Matheson AL, Campbell KL, Willis CK.

J Exp Biol. 2010 Jun 15;213(Pt 12):2165-73. doi: 10.1242/jeb.040188.

46.

Thermocron iButton and iBBat temperature dataloggers emit ultrasound.

Willis CK, Jameson JW, Faure PA, Boyles JG, Brack V Jr, Cervone TH.

J Comp Physiol B. 2009 Oct;179(7):867-74. doi: 10.1007/s00360-009-0366-0. Epub 2009 May 26.

PMID:
19468737
47.

An energy-based body temperature threshold between torpor and normothermia for small mammals.

Willis CK.

Physiol Biochem Zool. 2007 Nov-Dec;80(6):643-51. Epub 2007 Sep 5.

PMID:
17910000
48.

Deep, prolonged torpor by pregnant, free-ranging bats.

Willis CK, Brigham RM, Geiser F.

Naturwissenschaften. 2006 Feb;93(2):80-3. Epub 2006 Feb 3.

PMID:
16456644
49.

Torpor and thermal energetics in a tiny Australian vespertilionid, the little forest bat (Vespadelus vulturnus).

Willis CK, Turbill C, Geiser F.

J Comp Physiol B. 2005 Oct;175(7):479-86. Epub 2005 Oct 26.

PMID:
16088391
50.

Supplemental Content

Loading ...
Support Center