Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 25

1.

Cadmium opens GluK2 kainate receptors with cysteine substitutions at the M3 helix bundle crossing.

Wilding TJ, Huettner JE.

J Gen Physiol. 2018 Nov 29. pii: jgp.201812234. doi: 10.1085/jgp.201812234. [Epub ahead of print]

PMID:
30498132
2.

Visualizing pregnenolone sulfate-like modulators of NMDA receptor function reveals intracellular and plasma-membrane localization.

Chisari M, Wilding TJ, Brunwasser S, Krishnan K, Qian M, Benz A, Huettner JE, Zorumski CF, Covey DF, Mennerick S.

Neuropharmacology. 2019 Jan;144:91-103. doi: 10.1016/j.neuropharm.2018.10.015. Epub 2018 Oct 15.

PMID:
30332607
3.
4.

Radial symmetry in a chimeric glutamate receptor pore.

Wilding TJ, Lopez MN, Huettner JE.

Nat Commun. 2014;5:3349. doi: 10.1038/ncomms4349.

5.

Q/R site interactions with the M3 helix in GluK2 kainate receptor channels revealed by thermodynamic mutant cycles.

Lopez MN, Wilding TJ, Huettner JE.

J Gen Physiol. 2013 Sep;142(3):225-39. doi: 10.1085/jgp.201311000. Epub 2013 Aug 12.

6.

Fatty acid modulation and polyamine block of GluK2 kainate receptors analyzed by scanning mutagenesis.

Wilding TJ, Chen K, Huettner JE.

J Gen Physiol. 2010 Sep;136(3):339-52. doi: 10.1085/jgp.201010442.

7.

The BTB/kelch protein, KRIP6, modulates the interaction of PICK1 with GluR6 kainate receptors.

Laezza F, Wilding TJ, Sequeira S, Craig AM, Huettner JE.

Neuropharmacology. 2008 Dec;55(7):1131-9. doi: 10.1016/j.neuropharm.2008.07.021. Epub 2008 Jul 23.

8.

Amino acid substitutions in the pore helix of GluR6 control inhibition by membrane fatty acids.

Wilding TJ, Fulling E, Zhou Y, Huettner JE.

J Gen Physiol. 2008 Jul;132(1):85-99. doi: 10.1085/jgp.200810009. Epub 2008 Jun 18.

9.

KRIP6: a novel BTB/kelch protein regulating function of kainate receptors.

Laezza F, Wilding TJ, Sequeira S, Coussen F, Zhang XZ, Hill-Robinson R, Mulle C, Huettner JE, Craig AM.

Mol Cell Neurosci. 2007 Apr;34(4):539-50. Epub 2007 Jan 24.

10.

Q/R site editing controls kainate receptor inhibition by membrane fatty acids.

Wilding TJ, Zhou Y, Huettner JE.

J Neurosci. 2005 Oct 12;25(41):9470-8.

11.

Kainate receptor subunits underlying presynaptic regulation of transmitter release in the dorsal horn.

Kerchner GA, Wilding TJ, Huettner JE, Zhuo M.

J Neurosci. 2002 Sep 15;22(18):8010-7.

12.

Functional diversity and developmental changes in rat neuronal kainate receptors.

Wilding TJ, Huettner JE.

J Physiol. 2001 Apr 15;532(Pt 2):411-21.

13.

Presynaptic kainate receptors regulate spinal sensory transmission.

Kerchner GA, Wilding TJ, Li P, Zhuo M, Huettner JE.

J Neurosci. 2001 Jan 1;21(1):59-66.

14.

Kainate-receptor-mediated sensory synaptic transmission in mammalian spinal cord.

Li P, Wilding TJ, Kim SJ, Calejesan AA, Huettner JE, Zhuo M.

Nature. 1999 Jan 14;397(6715):161-4.

PMID:
9923678
15.

Antagonism of neuronal kainate receptors by lanthanum and gadolinium.

Huettner JE, Stack E, Wilding TJ.

Neuropharmacology. 1998 Oct-Nov;37(10-11):1239-47.

PMID:
9849661
16.

Inhibition of rat neuronal kainate receptors by cis-unsaturated fatty acids.

Wilding TJ, Chai YH, Huettner JE.

J Physiol. 1998 Dec 1;513 ( Pt 2):331-9.

17.

Efficacy and kinetics of opioid action on acutely dissociated neurons.

Ingram S, Wilding TJ, McCleskey EW, Williams JT.

Mol Pharmacol. 1997 Jul;52(1):136-43.

18.

Desensitization of kainate receptors by kainate, glutamate and diastereomers of 4-methylglutamate.

Jones KA, Wilding TJ, Huettner JE, Costa AM.

Neuropharmacology. 1997 Jun;36(6):853-63.

PMID:
9225313
19.

Activation and desensitization of hippocampal kainate receptors.

Wilding TJ, Huettner JE.

J Neurosci. 1997 Apr 15;17(8):2713-21.

20.
21.

Fast, local signal transduction between the mu opioid receptor and Ca2+ channels.

Wilding TJ, Womack MD, McCleskey EW.

J Neurosci. 1995 May;15(5 Pt 2):4124-32.

23.

pH regulation in adult rat carotid body glomus cells. Importance of extracellular pH, sodium, and potassium.

Wilding TJ, Cheng B, Roos A.

J Gen Physiol. 1992 Oct;100(4):593-608. Erratum in: J Gen Physiol 1993 Jan;101(1):following 144.

24.

Changes in intracellular pH caused by high K in normal and acidified frog muscle. Relation to metabolic changes.

Amorena CE, Wilding TJ, Manchester JK, Roos A.

J Gen Physiol. 1990 Nov;96(5):959-72.

25.

Properties of the intracellular pH-regulating systems of frog skeletal muscle.

Putnam RW, Roos A, Wilding TJ.

J Physiol. 1986 Dec;381:205-19.

Supplemental Content

Loading ...
Support Center