Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 59

1.

Anaerobic oxidation of ethane by archaea from a marine hydrocarbon seep.

Chen SC, Musat N, Lechtenfeld OJ, Paschke H, Schmidt M, Said N, Popp D, Calabrese F, Stryhanyuk H, Jaekel U, Zhu YG, Joye SB, Richnow HH, Widdel F, Musat F.

Nature. 2019 Apr;568(7750):108-111. doi: 10.1038/s41586-019-1063-0. Epub 2019 Mar 27.

PMID:
30918404
2.

Thermophilic archaea activate butane via alkyl-coenzyme M formation.

Laso-Pérez R, Wegener G, Knittel K, Widdel F, Harding KJ, Krukenberg V, Meier DV, Richter M, Tegetmeyer HE, Riedel D, Richnow HH, Adrian L, Reemtsma T, Lechtenfeld OJ, Musat F.

Nature. 2016 Nov 17;539(7629):396-401. doi: 10.1038/nature20152. Epub 2016 Oct 17.

PMID:
27749816
3.

Zero-valent sulphur is a key intermediate in marine methane oxidation.

Milucka J, Ferdelman TG, Polerecky L, Franzke D, Wegener G, Schmid M, Lieberwirth I, Wagner M, Widdel F, Kuypers MM.

Nature. 2012 Nov 22;491(7425):541-6. doi: 10.1038/nature11656. Epub 2012 Nov 7.

PMID:
23135396
4.

Immunological detection of enzymes for sulfate reduction in anaerobic methane-oxidizing consortia.

Milucka J, Widdel F, Shima S.

Environ Microbiol. 2013 May;15(5):1561-71. doi: 10.1111/1462-2920.12003. Epub 2012 Oct 24.

PMID:
23095164
5.

Anaerobic utilization of toluene by marine alpha- and gammaproteobacteria reducing nitrate.

Alain K, Harder J, Widdel F, Zengler K.

Microbiology. 2012 Dec;158(Pt 12):2946-57. doi: 10.1099/mic.0.061598-0. Epub 2012 Oct 4.

PMID:
23038808
6.

Marine sulfate-reducing bacteria cause serious corrosion of iron under electroconductive biogenic mineral crust.

Enning D, Venzlaff H, Garrelfs J, Dinh HT, Meyer V, Mayrhofer K, Hassel AW, Stratmann M, Widdel F.

Environ Microbiol. 2012 Jul;14(7):1772-87. doi: 10.1111/j.1462-2920.2012.02778.x. Epub 2012 May 23.

7.

Carbon and sulfur back flux during anaerobic microbial oxidation of methane and coupled sulfate reduction.

Holler T, Wegener G, Niemann H, Deusner C, Ferdelman TG, Boetius A, Brunner B, Widdel F.

Proc Natl Acad Sci U S A. 2011 Dec 27;108(52):E1484-90. doi: 10.1073/pnas.1106032108. Epub 2011 Dec 12. Erratum in: Proc Natl Acad Sci U S A. 2012 Dec 18;109(51):21170.

8.

Stereochemical investigations reveal the mechanism of the bacterial activation of n-alkanes without oxygen.

Jarling R, Sadeghi M, Drozdowska M, Lahme S, Buckel W, Rabus R, Widdel F, Golding BT, Wilkes H.

Angew Chem Int Ed Engl. 2012 Feb 6;51(6):1334-8. doi: 10.1002/anie.201106055. Epub 2011 Nov 30. No abstract available.

PMID:
22127985
9.

Co-metabolic conversion of toluene in anaerobic n-alkane-degrading bacteria.

Rabus R, Jarling R, Lahme S, Kühner S, Heider J, Widdel F, Wilkes H.

Environ Microbiol. 2011 Sep;13(9):2576-86. doi: 10.1111/j.1462-2920.2011.02529.x. Epub 2011 Aug 22.

PMID:
21880102
10.

Alkane degradation under anoxic conditions by a nitrate-reducing bacterium with possible involvement of the electron acceptor in substrate activation.

Zedelius J, Rabus R, Grundmann O, Werner I, Brodkorb D, Schreiber F, Ehrenreich P, Behrends A, Wilkes H, Kube M, Reinhardt R, Widdel F.

Environ Microbiol Rep. 2011 Feb;3(1):125-135.

11.

Thermophilic anaerobic oxidation of methane by marine microbial consortia.

Holler T, Widdel F, Knittel K, Amann R, Kellermann MY, Hinrichs KU, Teske A, Boetius A, Wegener G.

ISME J. 2011 Dec;5(12):1946-56. doi: 10.1038/ismej.2011.77. Epub 2011 Jun 23.

12.

Bacterial enzymes for dissimilatory sulfate reduction in a marine microbial mat (Black Sea) mediating anaerobic oxidation of methane.

Basen M, Krüger M, Milucka J, Kuever J, Kahnt J, Grundmann O, Meyerdierks A, Widdel F, Shima S.

Environ Microbiol. 2011 May;13(5):1370-9. doi: 10.1111/j.1462-2920.2011.02443.x. Epub 2011 Mar 9.

PMID:
21392199
13.

Microbial nitrate-dependent cyclohexane degradation coupled with anaerobic ammonium oxidation.

Musat F, Wilkes H, Behrends A, Woebken D, Widdel F.

ISME J. 2010 Oct;4(10):1290-301. doi: 10.1038/ismej.2010.50. Epub 2010 Apr 22.

PMID:
20410937
14.

Substantial (13) C/(12) C and D/H fractionation during anaerobic oxidation of methane by marine consortia enriched in vitro.

Holler T, Wegener G, Knittel K, Boetius A, Brunner B, Kuypers MM, Widdel F.

Environ Microbiol Rep. 2009 Oct;1(5):370-6. doi: 10.1111/j.1758-2229.2009.00074.x. Epub 2009 Sep 23.

PMID:
23765889
15.

Anaerobic degradation of naphthalene and 2-methylnaphthalene by strains of marine sulfate-reducing bacteria.

Musat F, Galushko A, Jacob J, Widdel F, Kube M, Reinhardt R, Wilkes H, Schink B, Rabus R.

Environ Microbiol. 2009 Jan;11(1):209-19. doi: 10.1111/j.1462-2920.2008.01756.x. Epub 2008 Sep 22.

PMID:
18811643
16.

Structure of an F430 variant from archaea associated with anaerobic oxidation of methane.

Mayr S, Latkoczy C, Krüger M, Günther D, Shima S, Thauer RK, Widdel F, Jaun B.

J Am Chem Soc. 2008 Aug 13;130(32):10758-67. doi: 10.1021/ja802929z. Epub 2008 Jul 22.

PMID:
18642902
17.

Anaerobic degradation of benzene by a marine sulfate-reducing enrichment culture, and cell hybridization of the dominant phylotype.

Musat F, Widdel F.

Environ Microbiol. 2008 Jan;10(1):10-9. doi: 10.1111/j.1462-2920.2007.01425.x.

PMID:
18211263
18.

Genes encoding the candidate enzyme for anaerobic activation of n-alkanes in the denitrifying bacterium, strain HxN1.

Grundmann O, Behrends A, Rabus R, Amann J, Halder T, Heider J, Widdel F.

Environ Microbiol. 2008 Feb;10(2):376-85. Epub 2007 Oct 24.

PMID:
17961174
19.

Anaerobic oxidation of short-chain hydrocarbons by marine sulphate-reducing bacteria.

Kniemeyer O, Musat F, Sievert SM, Knittel K, Wilkes H, Blumenberg M, Michaelis W, Classen A, Bolm C, Joye SB, Widdel F.

Nature. 2007 Oct 18;449(7164):898-901. Epub 2007 Sep 19.

PMID:
17882164
20.

In vitro cell growth of marine archaeal-bacterial consortia during anaerobic oxidation of methane with sulfate.

Nauhaus K, Albrecht M, Elvert M, Boetius A, Widdel F.

Environ Microbiol. 2007 Jan;9(1):187-96.

PMID:
17227423
21.

Study of nitrogen fixation in microbial communities of oil-contaminated marine sediment microcosms.

Musat F, Harder J, Widdel F.

Environ Microbiol. 2006 Oct;8(10):1834-43.

PMID:
16958764
22.

The genome sequence of an anaerobic aromatic-degrading denitrifying bacterium, strain EbN1.

Rabus R, Kube M, Heider J, Beck A, Heitmann K, Widdel F, Reinhardt R.

Arch Microbiol. 2005 Jan;183(1):27-36. Epub 2004 Nov 13.

PMID:
15551059
23.

Alkaliflexus imshenetskii gen. nov. sp. nov., a new alkaliphilic gliding carbohydrate-fermenting bacterium with propionate formation from a soda lake.

Zhilina TN, Appel R, Probian C, Brossa EL, Harder J, Widdel F, Zavarzin GA.

Arch Microbiol. 2004 Oct;182(2-3):244-53. Epub 2004 Aug 31.

PMID:
15340778
24.

Iron corrosion by novel anaerobic microorganisms.

Dinh HT, Kuever J, Mussmann M, Hassel AW, Stratmann M, Widdel F.

Nature. 2004 Feb 26;427(6977):829-32.

PMID:
14985759
25.

A conspicuous nickel protein in microbial mats that oxidize methane anaerobically.

Krüger M, Meyerdierks A, Glöckner FO, Amann R, Widdel F, Kube M, Reinhardt R, Kahnt J, Böcher R, Thauer RK, Shima S.

Nature. 2003 Dec 18;426(6968):878-81.

PMID:
14685246
26.

Effect of growth temperature on cellular fatty acids in sulphate-reducing bacteria.

Könneke M, Widdel F.

Environ Microbiol. 2003 Nov;5(11):1064-70.

PMID:
14641586
27.

Anaerobic degradation of ethylbenzene by a new type of marine sulfate-reducing bacterium.

Kniemeyer O, Fischer T, Wilkes H, Glöckner FO, Widdel F.

Appl Environ Microbiol. 2003 Feb;69(2):760-8.

28.

Genes involved in the anaerobic degradation of ethylbenzene in a denitrifying bacterium, strain EbN1.

Rabus R, Kube M, Beck A, Widdel F, Reinhardt R.

Arch Microbiol. 2002 Dec;178(6):506-16. Epub 2002 Oct 3.

PMID:
12420173
29.

Microbial reefs in the Black Sea fueled by anaerobic oxidation of methane.

Michaelis W, Seifert R, Nauhaus K, Treude T, Thiel V, Blumenberg M, Knittel K, Gieseke A, Peterknecht K, Pape T, Boetius A, Amann R, Jørgensen BB, Widdel F, Peckmann J, Pimenov NV, Gulin MB.

Science. 2002 Aug 9;297(5583):1013-5.

30.

In vitro demonstration of anaerobic oxidation of methane coupled to sulphate reduction in sediment from a marine gas hydrate area.

Nauhaus K, Boetius A, Krüger M, Widdel F.

Environ Microbiol. 2002 May;4(5):296-305.

PMID:
12080959
31.

Anaerobic degradation of n-hexane in a denitrifying bacterium: further degradation of the initial intermediate (1-methylpentyl)succinate via C-skeleton rearrangement.

Wilkes H, Rabus R, Fischer T, Armstroff A, Behrends A, Widdel F.

Arch Microbiol. 2002 Mar;177(3):235-43. Epub 2001 Dec 14.

PMID:
11907679
32.

Metabolism of alkylbenzenes, alkanes, and other hydrocarbons in anaerobic bacteria.

Spormann AM, Widdel F.

Biodegradation. 2000;11(2-3):85-105. Review.

PMID:
11440245
33.

Anaerobic biodegradation of saturated and aromatic hydrocarbons.

Widdel F, Rabus R.

Curr Opin Biotechnol. 2001 Jun;12(3):259-76. Review.

PMID:
11404104
34.

Anaerobic degradation of naphthalene by a pure culture of a novel type of marine sulphate-reducing bacterium.

Galushko A, Minz D, Schink B, Widdel F.

Environ Microbiol. 1999 Oct;1(5):415-20.

PMID:
11207761
35.

Anaerobic utilization of alkylbenzenes and n-alkanes from crude oil in an enrichment culture of denitrifying bacteria affiliating with the beta-subclass of Proteobacteria.

Rabus R, Wilkes H, Schramm A, Harms G, Behrends A, Amann R, Widdel F.

Environ Microbiol. 1999 Apr;1(2):145-57.

PMID:
11207730
36.
37.

A marine microbial consortium apparently mediating anaerobic oxidation of methane.

Boetius A, Ravenschlag K, Schubert CJ, Rickert D, Widdel F, Gieseke A, Amann R, Jørgensen BB, Witte U, Pfannkuche O.

Nature. 2000 Oct 5;407(6804):623-6.

PMID:
11034209
38.

Anaerobic oxidation of alkanes by newly isolated denitrifying bacteria.

Ehrenreich P, Behrends A, Harder J, Widdel F.

Arch Microbiol. 2000 Jan;173(1):58-64. Erratum in: Arch Microbiol 2000 Mar;173(3):232.

PMID:
10648105
39.

Anaerobic oxidation of the aromatic plant hydrocarbon p-cymene by newly isolated denitrifying bacteria.

Harms G, Rabus R, Widdel F.

Arch Microbiol. 1999 Nov;172(5):303-12.

PMID:
10550472
40.

Phototrophic utilization of toluene under anoxic conditions by a new strain of blastochloris sulfoviridis

Zengler K, Heider J, Rossello-Mora R, Widdel F.

Arch Microbiol. 1999 Oct;172(4):204-12.

PMID:
10525736
41.

Physiology, phylogenetic relationships, and ecology of filamentous sulfate-reducing bacteria (genus desulfonema)

Fukui M, Teske A, Assmus B, Muyzer G, Widdel F.

Arch Microbiol. 1999 Oct;172(4):193-203.

PMID:
10525735
42.

Methane formation from long-chain alkanes by anaerobic microorganisms.

Zengler K, Richnow HH, Rosselló-Mora R, Michaelis W, Widdel F.

Nature. 1999 Sep 16;401(6750):266-9.

PMID:
10499582
43.
44.

Anaerobic oxidation of o-xylene, m-xylene, and homologous alkylbenzenes by new types of sulfate-reducing bacteria.

Harms G, Zengler K, Rabus R, Aeckersberg F, Minz D, Rosselló-Mora R, Widdel F.

Appl Environ Microbiol. 1999 Mar;65(3):999-1004.

46.

Anaerobic, nitrate-dependent microbial oxidation of ferrous iron.

Straub KL, Benz M, Schink B, Widdel F.

Appl Environ Microbiol. 1996 Apr;62(4):1458-60.

47.
48.
49.
50.

Anaerobic oxidation of hydrocarbons in crude oil by new types of sulphate-reducing bacteria.

Rueter P, Rabus R, Wilkes H, Aeckersberg F, Rainey FA, Jannasch HW, Widdel F.

Nature. 1994 Dec 1;372(6505):455-8.

PMID:
7984238

Supplemental Content

Loading ...
Support Center