Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 92

1.

Hsp90 of E. coli modulates assembly of FtsZ, the bacterial tubulin homolog.

Balasubramanian A, Markovski M, Hoskins JR, Doyle SM, Wickner S.

Proc Natl Acad Sci U S A. 2019 Jun 18;116(25):12285-12294. doi: 10.1073/pnas.1904014116. Epub 2019 Jun 3.

PMID:
31160467
2.

Intermolecular Interactions between Hsp90 and Hsp70.

Doyle SM, Hoskins JR, Kravats AN, Heffner AL, Garikapati S, Wickner S.

J Mol Biol. 2019 May 22. pii: S0022-2836(19)30298-0. doi: 10.1016/j.jmb.2019.05.026. [Epub ahead of print]

PMID:
31125567
3.

Structural basis for inhibition of a response regulator of σS stability by a ClpXP antiadaptor.

Dorich V, Brugger C, Tripathi A, Hoskins JR, Tong S, Suhanovsky MM, Sastry A, Wickner S, Gottesman S, Deaconescu AM.

Genes Dev. 2019 Jun 1;33(11-12):718-732. doi: 10.1101/gad.320168.118. Epub 2019 Apr 11.

PMID:
30975721
4.

Hsp90 and Hsp70 chaperones: Collaborators in protein remodeling.

Genest O, Wickner S, Doyle SM.

J Biol Chem. 2019 Feb 8;294(6):2109-2120. doi: 10.1074/jbc.REV118.002806. Epub 2018 Nov 6. Review.

5.

Functional and physical interaction between yeast Hsp90 and Hsp70.

Kravats AN, Hoskins JR, Reidy M, Johnson JL, Doyle SM, Genest O, Masison DC, Wickner S.

Proc Natl Acad Sci U S A. 2018 Mar 6;115(10):E2210-E2219. doi: 10.1073/pnas.1719969115. Epub 2018 Feb 20.

6.

Bacterial Hsp90 ATPase Assays.

Hoskins JR, Wickner S, Doyle SM.

Methods Mol Biol. 2018;1709:199-207. doi: 10.1007/978-1-4939-7477-1_15.

PMID:
29177661
7.

Substrate Discrimination by ClpB and Hsp104.

Johnston DM, Miot M, Hoskins JR, Wickner S, Doyle SM.

Front Mol Biosci. 2017 May 29;4:36. doi: 10.3389/fmolb.2017.00036. eCollection 2017.

8.

Interaction of E. coli Hsp90 with DnaK Involves the DnaJ Binding Region of DnaK.

Kravats AN, Doyle SM, Hoskins JR, Genest O, Doody E, Wickner S.

J Mol Biol. 2017 Mar 24;429(6):858-872. doi: 10.1016/j.jmb.2016.12.014. Epub 2016 Dec 21.

9.

Hsp70 and Hsp90 of E. coli Directly Interact for Collaboration in Protein Remodeling.

Genest O, Hoskins JR, Kravats AN, Doyle SM, Wickner S.

J Mol Biol. 2015 Dec 4;427(24):3877-89. doi: 10.1016/j.jmb.2015.10.010. Epub 2015 Oct 23.

10.

Interplay between E. coli DnaK, ClpB and GrpE during protein disaggregation.

Doyle SM, Shastry S, Kravats AN, Shih YH, Miot M, Hoskins JR, Stan G, Wickner S.

J Mol Biol. 2015 Jan 30;427(2):312-27. doi: 10.1016/j.jmb.2014.10.013. Epub 2014 Oct 29.

11.

Hsp40s specify functions of Hsp104 and Hsp90 protein chaperone machines.

Reidy M, Sharma R, Shastry S, Roberts BL, Albino-Flores I, Wickner S, Masison DC.

PLoS Genet. 2014 Oct 16;10(10):e1004720. doi: 10.1371/journal.pgen.1004720. eCollection 2014 Oct.

12.

Location of dual sites in E. coli FtsZ important for degradation by ClpXP; one at the C-terminus and one in the disordered linker.

Camberg JL, Viola MG, Rea L, Hoskins JR, Wickner S.

PLoS One. 2014 Apr 10;9(4):e94964. doi: 10.1371/journal.pone.0094964. eCollection 2014.

13.

Anti-adaptors provide multiple modes for regulation of the RssB adaptor protein.

Battesti A, Hoskins JR, Tong S, Milanesio P, Mann JM, Kravats A, Tsegaye YM, Bougdour A, Wickner S, Gottesman S.

Genes Dev. 2013 Dec 15;27(24):2722-35. doi: 10.1101/gad.229617.113.

14.

Preventing bacterial suicide: a novel toxin-antitoxin strategy.

Markovski M, Wickner S.

Mol Cell. 2013 Dec 12;52(5):611-2. doi: 10.1016/j.molcel.2013.11.018.

15.

Protein rescue from aggregates by powerful molecular chaperone machines.

Doyle SM, Genest O, Wickner S.

Nat Rev Mol Cell Biol. 2013 Oct;14(10):617-29. doi: 10.1038/nrm3660. Review.

PMID:
24061228
16.

Uncovering a region of heat shock protein 90 important for client binding in E. coli and chaperone function in yeast.

Genest O, Reidy M, Street TO, Hoskins JR, Camberg JL, Agard DA, Masison DC, Wickner S.

Mol Cell. 2013 Feb 7;49(3):464-73. doi: 10.1016/j.molcel.2012.11.017. Epub 2012 Dec 20.

17.

Flexible connection of the N-terminal domain in ClpB modulates substrate binding and the aggregate reactivation efficiency.

Zhang T, Ploetz EA, Nagy M, Doyle SM, Wickner S, Smith PE, Zolkiewski M.

Proteins. 2012 Dec;80(12):2758-68. doi: 10.1002/prot.24159. Epub 2012 Sep 15.

18.

Regulated proteolysis as a force to control the cell cycle.

Camberg JL, Wickner S.

Structure. 2012 Jul 3;20(7):1128-30. doi: 10.1016/j.str.2012.06.004.

19.
20.

E. coli chaperones DnaK, Hsp33 and Spy inhibit bacterial functional amyloid assembly.

Evans ML, Schmidt JC, Ilbert M, Doyle SM, Quan S, Bardwell JC, Jakob U, Wickner S, Chapman MR.

Prion. 2011 Oct-Dec;5(4):323-34. doi: 10.4161/pri.18555. Epub 2011 Oct 1.

21.

Heat shock protein 90 from Escherichia coli collaborates with the DnaK chaperone system in client protein remodeling.

Genest O, Hoskins JR, Camberg JL, Doyle SM, Wickner S.

Proc Natl Acad Sci U S A. 2011 May 17;108(20):8206-11. doi: 10.1073/pnas.1104703108. Epub 2011 Apr 27.

22.

Species-specific collaboration of heat shock proteins (Hsp) 70 and 100 in thermotolerance and protein disaggregation.

Miot M, Reidy M, Doyle SM, Hoskins JR, Johnston DM, Genest O, Vitery MC, Masison DC, Wickner S.

Proc Natl Acad Sci U S A. 2011 Apr 26;108(17):6915-20. doi: 10.1073/pnas.1102828108. Epub 2011 Apr 7.

23.

The interplay of ClpXP with the cell division machinery in Escherichia coli.

Camberg JL, Hoskins JR, Wickner S.

J Bacteriol. 2011 Apr;193(8):1911-8. doi: 10.1128/JB.01317-10. Epub 2011 Feb 11.

24.

Coupling ATP utilization to protein remodeling by ClpB, a hexameric AAA+ protein.

Hoskins JR, Doyle SM, Wickner S.

Proc Natl Acad Sci U S A. 2009 Dec 29;106(52):22233-8. doi: 10.1073/pnas.0911937106. Epub 2009 Nov 25.

25.

ClpXP protease degrades the cytoskeletal protein, FtsZ, and modulates FtsZ polymer dynamics.

Camberg JL, Hoskins JR, Wickner S.

Proc Natl Acad Sci U S A. 2009 Jun 30;106(26):10614-9. doi: 10.1073/pnas.0904886106. Epub 2009 Jun 17.

26.

Hsp104 and ClpB: protein disaggregating machines.

Doyle SM, Wickner S.

Trends Biochem Sci. 2009 Jan;34(1):40-8. doi: 10.1016/j.tibs.2008.09.010. Epub 2008 Nov 12. Review.

PMID:
19008106
27.
28.

Collaboration between the ClpB AAA+ remodeling protein and the DnaK chaperone system.

Doyle SM, Hoskins JR, Wickner S.

Proc Natl Acad Sci U S A. 2007 Jul 3;104(27):11138-44. Epub 2007 Jun 1.

29.

In vivo modulation of a DnaJ homolog, CbpA, by CbpM.

Chenoweth MR, Trun N, Wickner S.

J Bacteriol. 2007 May;189(9):3635-8. Epub 2007 Mar 2.

30.

Asymmetric deceleration of ClpB or Hsp104 ATPase activity unleashes protein-remodeling activity.

Doyle SM, Shorter J, Zolkiewski M, Hoskins JR, Lindquist S, Wickner S.

Nat Struct Mol Biol. 2007 Feb;14(2):114-22. Epub 2007 Jan 28.

31.

Specificity of DNA binding and dimerization by CspE from Escherichia coli.

Johnston D, Tavano C, Wickner S, Trun N.

J Biol Chem. 2006 Dec 29;281(52):40208-15. Epub 2006 Nov 4.

32.

Functional analysis of CbpA, a DnaJ homolog and nucleoid-associated DNA-binding protein.

Bird JG, Sharma S, Roshwalb SC, Hoskins JR, Wickner S.

J Biol Chem. 2006 Nov 10;281(45):34349-56. Epub 2006 Sep 14.

33.

Modulating RssB activity: IraP, a novel regulator of sigma(S) stability in Escherichia coli.

Bougdour A, Wickner S, Gottesman S.

Genes Dev. 2006 Apr 1;20(7):884-97.

34.

Two peptide sequences can function cooperatively to facilitate binding and unfolding by ClpA and degradation by ClpAP.

Hoskins JR, Wickner S.

Proc Natl Acad Sci U S A. 2006 Jan 24;103(4):909-14. Epub 2006 Jan 12.

35.

Binding and degradation of heterodimeric substrates by ClpAP and ClpXP.

Sharma S, Hoskins JR, Wickner S.

J Biol Chem. 2005 Feb 18;280(7):5449-55. Epub 2004 Dec 8.

36.

CbpA, a DnaJ homolog, is a DnaK co-chaperone, and its activity is modulated by CbpM.

Chae C, Sharma S, Hoskins JR, Wickner S.

J Biol Chem. 2004 Aug 6;279(32):33147-53. Epub 2004 Jun 7.

37.

Plasmid P1 RepA is homologous to the F plasmid RepE class of initiators.

Sharma S, Sathyanarayana BK, Bird JG, Hoskins JR, Lee B, Wickner S.

J Biol Chem. 2004 Feb 13;279(7):6027-34. Epub 2003 Nov 21.

38.

Interaction of the DnaK and DnaJ chaperone system with a native substrate, P1 RepA.

Kim SY, Sharma S, Hoskins JR, Wickner S.

J Biol Chem. 2002 Nov 22;277(47):44778-83. Epub 2002 Sep 16.

39.

ClpAP and ClpXP degrade proteins with tags located in the interior of the primary sequence.

Hoskins JR, Yanagihara K, Mizuuchi K, Wickner S.

Proc Natl Acad Sci U S A. 2002 Aug 20;99(17):11037-42. Epub 2002 Aug 12.

40.

Clp ATPases and their role in protein unfolding and degradation.

Hoskins JR, Sharma S, Sathyanarayana BK, Wickner S.

Adv Protein Chem. 2001;59:413-29. Review.

PMID:
11868279
41.

Overlapping recognition determinants within the ssrA degradation tag allow modulation of proteolysis.

Flynn JM, Levchenko I, Seidel M, Wickner SH, Sauer RT, Baker TA.

Proc Natl Acad Sci U S A. 2001 Sep 11;98(19):10584-9. Epub 2001 Sep 4.

42.

Translocation pathway of protein substrates in ClpAP protease.

Ishikawa T, Beuron F, Kessel M, Wickner S, Maurizi MR, Steven AC.

Proc Natl Acad Sci U S A. 2001 Apr 10;98(8):4328-33. Epub 2001 Apr 3.

43.

The RssB response regulator directly targets sigma(S) for degradation by ClpXP.

Zhou Y, Gottesman S, Hoskins JR, Maurizi MR, Wickner S.

Genes Dev. 2001 Mar 1;15(5):627-37.

44.

Substrate recognition by the ClpA chaperone component of ClpAP protease.

Hoskins JR, Kim SY, Wickner S.

J Biol Chem. 2000 Nov 10;275(45):35361-7.

45.

Unfolding and internalization of proteins by the ATP-dependent proteases ClpXP and ClpAP.

Singh SK, Grimaud R, Hoskins JR, Wickner S, Maurizi MR.

Proc Natl Acad Sci U S A. 2000 Aug 1;97(16):8898-903.

46.

Protein binding and unfolding by the chaperone ClpA and degradation by the protease ClpAP.

Hoskins JR, Singh SK, Maurizi MR, Wickner S.

Proc Natl Acad Sci U S A. 2000 Aug 1;97(16):8892-7.

47.

Posttranslational quality control: folding, refolding, and degrading proteins.

Wickner S, Maurizi MR, Gottesman S.

Science. 1999 Dec 3;286(5446):1888-93. Review.

PMID:
10583944
48.

Here's the hook: similar substrate binding sites in the chaperone domains of Clp and Lon.

Wickner S, Maurizi MR.

Proc Natl Acad Sci U S A. 1999 Jul 20;96(15):8318-20. No abstract available.

49.
50.

The role of the ClpA chaperone in proteolysis by ClpAP.

Hoskins JR, Pak M, Maurizi MR, Wickner S.

Proc Natl Acad Sci U S A. 1998 Oct 13;95(21):12135-40.

Supplemental Content

Loading ...
Support Center